Airoldi / Blei / Erosheva | Handbook of Mixed Membership Models and Their Applications | Buch | 978-1-4665-0408-0 | sack.de

Buch, Englisch, 620 Seiten, Format (B × H): 179 mm x 261 mm, Gewicht: 1484 g

Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods

Airoldi / Blei / Erosheva

Handbook of Mixed Membership Models and Their Applications


1. Auflage 2014
ISBN: 978-1-4665-0408-0
Verlag: CRC Press

Buch, Englisch, 620 Seiten, Format (B × H): 179 mm x 261 mm, Gewicht: 1484 g

Reihe: Chapman & Hall/CRC Handbooks of Modern Statistical Methods

ISBN: 978-1-4665-0408-0
Verlag: CRC Press


In response to scientific needs for more diverse and structured explanations of statistical data, researchers have discovered how to model individual data points as belonging to multiple groups. Handbook of Mixed Membership Models and Their Applications shows you how to use these flexible modeling tools to uncover hidden patterns in modern high-dimensional multivariate data. It explores the use of the models in various application settings, including survey data, population genetics, text analysis, image processing and annotation, and molecular biology.

Through examples using real data sets, you’ll discover how to characterize complex multivariate data in:

- Studies involving genetic databases

- Patterns in the progression of diseases and disabilities

- Combinations of topics covered by text documents

- Political ideology or electorate voting patterns

- Heterogeneous relationships in networks, and much more

The handbook spans more than 20 years of the editors’ and contributors’ statistical work in the field. Top researchers compare partial and mixed membership models, explain how to interpret mixed membership, delve into factor analysis, and describe nonparametric mixed membership models. They also present extensions of the mixed membership model for text analysis, sequence and rank data, and network data as well as semi-supervised mixed membership models.

Airoldi / Blei / Erosheva Handbook of Mixed Membership Models and Their Applications jetzt bestellen!

Zielgruppe


Researchers, practitioners, and graduate students in statistics, biological sciences, and computer science.

Weitere Infos & Material


Mixed Membership: Setting the Stage. The Grade of Membership Model and Its Extensions. Topic Models: Mixed Membership Models for Text. Semi-Supervised Mixed Membership Models. Special Methodology for Sequence and Rank Data. Mixed Membership Models for Networks. Index.


Edoardo M. Airoldi is an associate professor of statistics at Harvard University. Dr. Airoldi’s current research focuses on statistical theory and methods for designing and analyzing experiments in the presence of network interference as well as on modeling and inferential issues when dealing with network data.

David M. Blei is a professor of statistics and computer science at Columbia University. Dr. Blei’s research is in statistical machine learning involving probabilistic topic models, Bayesian nonparametric methods, and approximate posterior inference.

Elena A. Erosheva is an associate professor of statistics and social work at the University of Washington, where she is a core member of the Center for Statistics and the Social Sciences. Dr. Erosheva’s research focuses on the development and application of modern statistical methods to address important issues in the social, medical, and health sciences.

Stephen E. Fienberg is the Maurice Falk University Professor of Statistics and Social Science at Carnegie Mellon University, where he is co-director of the Living Analytics Research Centre and a member of the Department of Statistics, the Machine Learning Department, the Heinz College, and Cylab. Dr. Fienberg’s research includes the development of statistical methods for categorical data analysis and network data analysis.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.