Buch, Englisch, 214 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 530 g
Buch, Englisch, 214 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 530 g
Reihe: Forum for Interdisciplinary Mathematics
ISBN: 978-981-99-0568-3
Verlag: Springer
This monograph discusses the theoretical and practical development of multicriteria decision making (MCDM). The main purpose of MCDM is the construction of systematized strategies for the "optimisation" of feasible options, as well as the justification of why some alternatives can be declared "optimal". However, at time, we must make decisions in an uncertain environment and such inconvenience gives rise to a much more elaborate scenario. This book highlights models where this lack of certainty can be flexibly fitted in and goes on to explore valuable strategies for making decisions under a multiplicity of criteria. Methods discussed include bipolar fuzzy TOPSIS method, bipolar fuzzy ELECTRE-I method, bipolar fuzzy ELECTRE-II method, bipolar fuzzy VIKOR method, bipolar fuzzy PROMETHEE method, and two-tuple linguistic bipolar fuzzy Heronian mean operators. This book is a valuable resource for researchers, computer scientists, and social scientists alike.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Optimierung
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Mathematik Allgemein Mathematische Logik
- Wirtschaftswissenschaften Betriebswirtschaft Unternehmensforschung
Weitere Infos & Material
1 TOPSIS and ELECTRE I Methodologies: Bipolar Fuzzy Formulations . . . . . . . . . . . . 17
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . 17
1.2 Bipolar Fuzzy Sets . . . . . . . . . . . . .18
1.3 Multi-criteria Decision Making Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.4 Bipolar Fuzzy TOPSIS Method . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . 22
1.5 Bipolar Fuzzy ELECTRE I Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
1.6 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
1.7 Bipolar Fuzzy Extended TOPSIS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
1.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
References . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2 TOPSIS Method with Trapezoidal Bipolar Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . 45
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
2.2 Bipolar Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.3 Bipolar Fuzzy Linguistic Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
2.4 Ranking of Bipolar Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
2.5 (a, ß)-Cut of Bipolar Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
2.6 TOPSIS Method Based on Trapezoidal Bipolar Fuzzy Numbers . . . . . . . . . . . . . . . . . . . . . . 58
2.7 Trapezoidal Bipolar Fuzzy Information System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3 VIKOR Method with Trapezoidal Bipolar Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.2 Trapezoidal Bipolar Fuzzy VIKOR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
3.3 Comparative Analysis with Trapezoidal Bipolar Fuzzy TOPSIS . . . . . . . . . . . . . . . . . . . . . . 85
3.4 Comparison of Trapezoidal Bipolar Fuzzy VIKOR with Fuzzy VIKOR . . . . . . . . . . . . . . . . 88
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4 Extended VIKOR Method Based on Complex Bipolar Fuzzy Sets . . . . . . . . . . . . . . . . 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Complex Bipolar Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Structure of Complex Bipolar Fuzzy VIKOR Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.4 Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
4.5 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.6 Merits of the Presented Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
4.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5 Beyond ELECTRE I: A Bipolar Fuzzy ELECTRE II Method . . . . . . . . . . . . . . . . . . . . . 121
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.2 Bipolar Fuzzy ELECTRE II Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
5.3 Comparative Study and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.1 Bipolar Fuzzy TOPSIS Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
5.3.2 Bipolar Fuzzy ELECTRE I Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
5.3.3 Comparison of bipolar fuzzy ELECTRE II Method with fuzzy ELECTRE II Method139
5.4 Insights and Limitations of the Method Proposed in this Chapter . . . . . . . . . . . . . . . . . . . . . 140
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6 Extended PROMETHEE Method with Bipolar Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . 143
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.2 Bipolar Fuzzy PROMETHEE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.1 Preference Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.2.2 The Bipolar Fuzzy PROMETHEE Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1466.3 Comparative Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
6.4 Insights of the method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161
7 Enhanced Decision-Making Method with Two-Tuple Linguistic Bipolar Fuzzy Sets 165
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
7.2 The 2-Tuple Linguistic Bipolar Fuzzy Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
7.3 The 2-Tuple Linguistic Bipolar Fuzzy Heronian Mean Aggregation Operators . . . . . . . . . . 1717.4 An approach to MAGDM Problem with 2-Tuple Linguistic Bipolar Fuzzy Information . . 178
7.5 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
7.6 Comparative Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
7.7 Advantages of the proposed strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
7.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192




