Alt | Advances in Immunology | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band Volume 124, 308 Seiten

Reihe: Advances in Immunology

Alt Advances in Immunology


1. Auflage 2014
ISBN: 978-0-12-800362-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark

E-Book, Englisch, Band Volume 124, 308 Seiten

Reihe: Advances in Immunology

ISBN: 978-0-12-800362-6
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: 6 - ePub Watermark



Advances in Immunology, a long-established and highly respected publication, presents current developments as well as comprehensive reviews in immunology. Articles address the wide range of topics that comprise immunology, including molecular and cellular activation mechanisms, phylogeny and molecular evolution, and clinical modalities. Edited and authored by the foremost scientists in the field, each volume provides up-to-date information and directions for the future. - Contributions from leading authorities - Informs and updates on all the latest developments in the field

Alt Advances in Immunology jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover ;1
2;Advances in Immunology;4
3;Copyright;5
4;Contents;6
5;Contributors;10
6;Chapter One: Group 2 Innate Lymphoid Cells in the Lung;12
6.1;1. Introduction;12
6.2;2. General Features of ILC2s;13
6.3;3. Lung ILC2s at Resting Condition;14
6.4;4. Regulation and Function of Lung ILC2s;17
6.5;5. Potential Crosstalk Between ILC2s and Other Immune Cells;18
6.6;6. Roles of ILC2s in Asthma and Allergic Airway Responses;19
6.7;7. Roles of ILC2s in Allergic Airway Diseases in Humans;22
6.8;8. Concluding Remarks;23
6.9;References;24
7;Chapter Two: The Ubiquitin System in Immune Regulation;28
7.1;1. Introduction;29
7.1.1;1.1. The ubiquitin system;29
7.1.2;1.2. Deubiquitination;30
7.1.3;1.3. Protein ubiquitination in the immune responses;31
7.2;2. E3 Ligases in T-Cell Activation and Anergy;32
7.2.1;2.1. Cbl-b;34
7.2.2;2.2. Itch;35
7.2.3;2.3. GRAIL;36
7.2.4;2.4. TRAF6;37
7.2.5;2.5. Peli1;38
7.2.6;2.6. Roquin;39
7.3;3. E3 Ligases in T-Cell Differentiation;39
7.3.1;3.1. Tregs;40
7.3.2;3.2. Th1 cells;43
7.3.3;3.3. Th2 cells;43
7.3.4;3.4. Th17 cells;44
7.4;4. Ubiquitination in NF-.B Signaling;45
7.4.1;4.1. TNFR1 signaling;45
7.4.2;4.2. IL-1R/TLR4 signaling;51
7.4.3;4.3. T-cell receptor signaling;53
7.4.4;4.4. Noncanonical NF-.B signaling: CD40;56
7.5;5. Ubiquitination in Hematopoiesis;57
7.5.1;5.1. E2 enzyme;58
7.5.2;5.2. RING finger E3s;58
7.5.3;5.3. HECT-type E3;61
7.5.4;5.4. Deubiquitinating enzymes;62
7.6;6. Concluding Remarks;62
7.7;Acknowledgments;64
7.8;References;64
8;Chapter Three: How Immunoglobulin G Antibodies Kill Target Cells: Revisiting an Old Paradigm;78
8.1;1. Introduction;79
8.1.1;1.1. The beginnings of antibody-dependent cytotoxicity;80
8.1.2;1.2. Fc.-receptors as effector molecules in ADCC reactions;82
8.2;2. How an ADCC Works In Vivo: Insights from Mouse In Vivo Model Systems;85
8.2.1;2.1. IgG-mediated depletion of B cells;85
8.2.2;2.2. IgG-dependent therapy of solid tumors;90
8.3;3. Relevance of the Mouse Studies for the Human System;95
8.4;4. Outlook;97
8.5;Acknowledgments;98
8.6;References;98
9;Chapter Four: A Transendocytosis Perspective on the CD28/CTLA-4 Pathway;106
9.1;1. Introduction;107
9.1.1;1.1. The problem of immune self-tolerance;107
9.2;2. The CD28 Pathway;108
9.2.1;2.1. CD28 in the thymus;109
9.2.2;2.2. CD28 and Treg homeostasis;110
9.2.3;2.3. CD28 signals and T cell activation;112
9.2.4;2.4. CD28 and T cell differentiation;113
9.2.5;2.5. CD28 and memory responses;114
9.2.6;2.6. CD28 and anergy;115
9.2.7;2.7. CD28 and metabolism;116
9.3;3. CD80 and CD86: The Ligands for CD28 and CTLA-4;117
9.4;4. CTLA-4;121
9.4.1;4.1. Cell biology of CTLA-4;122
9.4.2;4.2. CTLA-4 function;124
9.4.2.1;4.2.1. A cell-extrinsic function for CTLA-4 in vivo;125
9.4.2.2;4.2.2. CTLA-4 and Treg;126
9.5;5. Transendocytosis as a Model of CTLA-4 Function;127
9.5.1;5.1. CTLA-4-expressing cells can reduce the levels of ligand on APC;129
9.5.2;5.2. Transendocytosis exploits the biophysical ligand-binding characteristics of CTLA-4;130
9.5.3;5.3. Transendocytosis explains the requirement for ligand sharing by CD28 and CTLA-4;130
9.5.4;5.4. Transendocytosis is a cell-extrinsic, ligand-dependent, CD28-dependent mechanism;131
9.5.5;5.5. Transendocytosis exploits the complex trafficking behavior in CTLA-4;132
9.5.6;5.6. Suppression by transendocytosis is easily overridden;132
9.6;6. An Integrated Perspective on CD28 and CTLA-4;133
9.7;References;134
10;Chapter Five: How to Trigger a Killer: Modulation of Natural Killer Cell Reactivity on Many Levels;148
10.1;1. Introduction;149
10.2;2. Early Notions About the Regulation of NK Cells;150
10.2.1;2.1. Inhibitory receptors;150
10.3;3. Activating NK Cell Receptors;152
10.3.1;3.1. Immunoreceptor tyrosine-based activation motif-based activating receptors;152
10.3.2;3.2. NKG2D;153
10.3.3;3.3. Immunoreceptor tyrosine-based switch motif-based receptors;154
10.3.4;3.4. DNAM-1, NKp80, and NKp65;154
10.3.5;3.5. Common activating signaling pathways;155
10.4;4. Regulation of Responsiveness During NK Cell Development;156
10.4.1;4.1. NK cell education;157
10.5;5. Activating Resting Mature NK Cells;161
10.5.1;5.1. NK cell activation via CD16;161
10.5.2;5.2. Synergistic signals for the activation of NK cells;162
10.6;6. Activation of Cytokine-Stimulated NK Cells;164
10.7;7. Same Receptor: Different Signals;165
10.8;8. The Reactivity of Memory NK Cells;167
10.8.1;8.1. Cytokine-induced memory-like cells;168
10.8.2;8.2. MCMV-induced memory cells;170
10.8.3;8.3. Liver-restricted memory NK cells;171
10.9;9. Outlook;172
10.10;Acknowledgments;172
10.11;References;173
11;Chapter Six: Roles for Helper T Cell Lineage-Specifying Transcription Factors in Cellular Specialization;182
11.1;1. Introduction;183
11.2;2. Specialized CD4+ Helper T Cells;184
11.3;3. Expanding View of Specialized Helper T Cell Subtypes;185
11.4;4. Hybrid Helper T Cell Phenotypes;187
11.5;5. Mechanisms: How Are the Complex Phenotypes Established?;188
11.6;6. Helper T Cell Lineage-Specifying Transcription Factors;189
11.7;7. Epigenetic States During Cellular Differentiation;190
11.8;8. Role for T-Bet in Regulating Epigenetic States;191
11.9;9. T-bet and Its Interacting Partners;193
11.10;10. T-bet and Bcl-6: Complex Functional Implications;194
11.11;11. Assessing Stability Versus Flexibility of Helper T Cell Subtypes;195
11.12;12. Epigenetic States;196
11.13;13. Expression of Cell Surface Receptors;198
11.14;14. Additional Regulatory Proteins;198
11.15;15. Signaling Cascades;200
11.16;16. Complexity of Factors Involved in Predicting Stability/Flexibility of Specialized Helper T Cells;200
11.17;17. Summary of Concepts Related to Stability and Flexibility in Helper T Cells;203
11.18;18. Role for ``CD4+ Helper T Cell´´ Lineage-Specifying Transcription Factors in Other Cell Types;204
11.19;19. Innate Lymphoid Cells;204
11.20;20. The Expression of the Th2-Cytokine Locus in ILC Versus Th2 Cells;205
11.21;21. Mechanisms That Contribute to the Development of ILC Versus Specialized Helper T Cells;206
11.22;22. Lineage-Specifying Transcription Factor Activity in Unique Cellular Settings;207
11.23;23. Summary and Future Challenges;209
11.24;Acknowledgments;210
11.25;References;211
12;Chapter Seven: MHC Class I Recognition by Monocyte-/Macrophage-Specific Receptors;218
12.1;1. Introduction;219
12.1.1;1.1. Major histocompatibility complex as a recognized molecule of allografted tumor cells undergoing rejection;219
12.1.2;1.2. Allograft rejection by cytotoxic T lymphocyte;220
12.1.3;1.3. Three fundamental issues in T-cell-mediated allorecognition;221
12.2;2. Three Types of Cytotoxic Cells Infiltrating into the Rejection Site of Allografts;223
12.2.1;2.1. Allograft-induced macrophages cytotoxic against allografts;223
12.2.1.1;2.1.1. In vivo distribution of cells cytotoxic against allografts;223
12.2.1.2;2.1.2. In situ effector cells cytotoxic against allografts;224
12.2.1.3;2.1.3. Allograft rejection by simultaneous inoculation of AIM;225
12.2.1.4;2.1.4. Failure to reject allografts after elimination of macrophages;225
12.2.1.5;2.1.5. Morphology of AIM;226
12.2.2;2.2. AIM-2 cytotoxic against tumor cells;228
12.2.3;2.3. CTLs cytotoxic against donor-type lymphoid cells or lymphoid allografts;229
12.3;3. Mechanisms of Allograft Rejection;232
12.3.1;3.1. Role of T cells in AIM-mediated allograft rejection;232
12.3.2;3.2. Allo-MHC-recognition by AIM;234
12.3.2.1;3.2.1. H-2 haplotype-dependent cold target inhibition;234
12.3.2.2;3.2.2. Antibody-independent allo-MHC-recognition;234
12.3.3;3.3. Cyototoxic mechanisms of AIM against allografts;235
12.3.3.1;3.3.1. Cell-to-cell contact-dependent and NO- and TNF-a-independent cytotoxicity;235
12.3.3.2;3.3.2. Ca2+- and ``bite-off´´-dependent and perforin- and Fas-independent apoptotic cell death;236
12.4;4. Tolerance to Skin Allografted onto CD4, But Not onto CD8, Knockout Mice;238
12.5;5. Three Types of Cytotoxic Cells Infiltrating into Rejection Site of Allografted Skin;238
12.6;6. Establishment of mAbs Against AIM;239
12.6.1;6.1. Four kinds of mAbs specific for activated macrophages including AIM;239
12.6.2;6.2. R12 and R15 mAbs specific for AIM;240
12.7;7. Monocyte/Macrophage MHC Receptors on AIM;241
12.7.1;7.1. Mouse MMR1 recognizes H-2Dd molecules;241
12.7.2;7.2. Mouse MMR2 recognizes H-2Kd molecules;243
12.7.3;7.3. Human homolog of mouse MMR1 and its ligand;245
12.7.4;7.4. Human homolog of mouse MMR2 and its ligands;247
12.8;8. Establishment of H-2Dd- and/or H-2Kd-Transgenic C57BL/6 Mice;249
12.9;9. Establishment of C57BL/6 Mice-Lacking MMR1 and/or MMR2;250
12.10;10. Graft-Versus-Host Disease and Graft-Versus-Leukemia Effect;252
12.11;11. Conclusions;252
12.12;Acknowledgments;253
12.13;References;253
13;Chapter Eight: Regulation of Regulatory T Cells: Epigenetics and Plasticity;260
13.1;1. Introduction;261
13.2;2. Generation of nTregs in the Thymus;262
13.3;3. Factors Involved in Foxp3 Expression;264
13.3.1;3.1. NFAT;265
13.3.2;3.2. c-Rel;265
13.3.3;3.3. AP-1;266
13.3.4;3.4. Nr4a;266
13.3.5;3.5. STAT5;268
13.4;4. Generation of Tregs by TGF-ß;269
13.5;5. Differences Between nTregs and iTregs;270
13.6;6. Epigenetic Changes in Tregs and Their Role in Treg Stability;271
13.7;7. Treg Stability and Its Implication in Immunological Diseases;272
13.8;8. Factors that Control Treg Stability;274
13.9;9. Conclusion;277
13.10;References;277
14;Index;286
15;Contents of Recent Volumes;296
16;Color Plates ;310



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.