Anselin | An Introduction to Spatial Data Science with GeoDa | Buch | 978-1-032-71302-1 | sack.de

Buch, Englisch, 230 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 650 g

Anselin

An Introduction to Spatial Data Science with GeoDa

Volume 2: Clustering Spatial Data
1. Auflage 2024
ISBN: 978-1-032-71302-1
Verlag: Chapman and Hall/CRC

Volume 2: Clustering Spatial Data

Buch, Englisch, 230 Seiten, Format (B × H): 183 mm x 260 mm, Gewicht: 650 g

ISBN: 978-1-032-71302-1
Verlag: Chapman and Hall/CRC


This book is the second in a two-volume series that introduces the field of spatial data science. It moves beyond pure data exploration to the organization of observations into meaningful groups, i.e., spatial clustering. This constitutes an important component of so-called unsupervised learning, a major aspect of modern machine learning.

The distinctive aspects of the book are both to explore ways to spatialize classic clustering methods through linked maps and graphs, as well as the explicit introduction of spatial contiguity constraints into clustering algorithms. Leveraging a large number of real-world empirical illustrations, readers will gain an understanding of the main concepts and techniques and their relative advantages and disadvantages. The book also constitutes the definitive user’s guide for these methods as implemented in the GeoDa open source software for spatial analysis.

It is organized into three major parts, dealing with dimension reduction (principal components, multidimensional scaling, stochastic network embedding), classic clustering methods (hierarchical clustering, k-means, k-medians, k-medoids and spectral clustering), and spatially constrained clustering methods (both hierarchical and partitioning). It closes with an assessment of spatial and non-spatial cluster properties.

The book is intended for readers interested in going beyond simple mapping of geographical data to gain insight into interesting patterns as expressed in spatial clusters of observations. Familiarity with the material in Volume 1 is assumed, especially the analysis of local spatial autocorrelation and the full range of visualization methods.

Anselin An Introduction to Spatial Data Science with GeoDa jetzt bestellen!

Zielgruppe


Postgraduate and Professional Practice & Development


Autoren/Hrsg.


Weitere Infos & Material


1. Introduction

Part 1: Dimension Reduction

2. Principal Component Analysis (PCA)

3. Multidimensional Scaling (MDS)

4. Stochastic Neighbor Embedding (SNE)

Part 2: Classic Clustering

5. Hierarchical Clustering Methods

6. Partioning Clustering Methods

7. Advanced Clustering Methods

8. Spectral Clustering

Part 3: Spatial Clustering

9. Spatializing Classic Clustering Methods

10. Spatially Constrained Clustering - Hierarchical Methods

11. Spatially Constrained Clustering - Partitioning Methods

Part 4: Assessment

12. Cluster Validation


Luc Anselin is the Founding Director of the Center for Spatial Data Science at the University of Chicago, where he is also Stein-Freiler Distinguished Service Professor of Sociology and the College, as well as a member of the Committee on Data Science. He is the creator of the GeoDa software and an active contributor to the PySAL Python open source software library for spatial analysis. He has written widely on topics dealing with the methodology of spatial data analysis, including his classic 1988 text on Spatial Econometrics. His work has been recognized by many awards, such as his election to the U.S. National Academy of Science and the American Academy of Arts and Science.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.