Arendt / Brezis / Pierre | Nonlinear Evolution Equations and Related Topics | E-Book | sack.de
E-Book

E-Book, Englisch, 807 Seiten, eBook

Arendt / Brezis / Pierre Nonlinear Evolution Equations and Related Topics

Dedicated to Philippe Bénilan
Erscheinungsjahr 2012
ISBN: 978-3-0348-7924-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Dedicated to Philippe Bénilan

E-Book, Englisch, 807 Seiten, eBook

ISBN: 978-3-0348-7924-8
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Philippe Bénilan was a most original and charismatic mathematician who had a deep and decisive impact on the theory of nonlinear evolution equations. The present volume is dedicated to him and contains research papers written by highly distinguished mathematicians. They are all related to Bénilan's work and reflect the present state of this most active field. The contributions cover a wide range of nonlinear and linear equations. Special topics are Hamilton-Jacobi equations, the porous medium equation, reaction diffusion systems, integro-differential equations and visco-elasticity, maximal regularity for elliptic and parabolic equations, and the Ornstein-Uhlenbeck operator. Also in this volume, the legendary work of Bénilan-Brézis on Thomas-Fermi theory is published for the first time.
Arendt / Brezis / Pierre Nonlinear Evolution Equations and Related Topics jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Intrinsic metrics and Lipschitz functions.- Decay estimates for “anisotropic” viscous Hamilton-Jacobi equationsin RN.- The Cauchy problem for linear growth functionals.- Asymptotic behaviour for the porous medium equation posedin the whole space.- Dirichlet and Neumann boundary conditions: What is in between?.- The focusing problem for the Eikonal equation.- Weak solutions and supersolutions in L1 for reaction-diffusion systems.- Global well-posedness and stability of a partial integro-differentialequation with applications to viscoelasticity.- On some singular limits of homogeneous semigroups.- Singular limit of changing sign solutions of the porous mediumequation.- On the regularizing effect of strongly increasing lower order terms.- Global smooth solutions for a quasilinear fractional evolution equation.- On the uniqueness of solutions for nonlinear elliptic-parabolicequations.- Conservation laws with discontinuous flux functions and boundary condition.- Regularity of solutions of nonlinear Volterra equations.- Nonautonomous heat equations with generalized Wentzellboundary conditions.- Maximal LP-regularity for elliptic operators with VMO-coefficients.- Linearized stability for nonlinear evolution equations.- D. Bothe Nonlinear evolutions with Carathéodory forcing.- Linear parabolic equations with singular potentials.- Some noncoercive parabolic equations with lower order termsin divergence form.- E. Feireisl On the motion of rigid bodies in a viscous incompressible fluid.- Minimization problems for eigenvalues of the Laplacian.- Rate of decay to equilibrium in some semilinear parabolic equations.- A new regularity result for Ornstein– Uhlenbeck generatorsand applications.- Global solution and smoothing effect for a non-local regularizationof a hyperbolicequation.- Convergence to equilibrium for a parabolic problem with mixedboundary conditions in one space dimension.- Analyticity of solutions to fully nonlinear parabolic evolutionequations on symmetric spaces.- Pointwise gradient estimates of solutions to onedimensionalnonlinear parabolic equations.- Uniqueness of entropy solutions for nonlinear degenerate parabolic problems.- Oscillatory boundary conditions for acoustic wave equations.- Existence and uniqueness results for large solutions of generalnonlinear elliptic equations.- Another way to say caloric.- Nonlinear problems related to the Thomas-Fermi equation.- Existence of attractors in L¡ã0(fi) for a class of reaction-diffusionsystems.- Uniqueness for an elliptic-parabolic problem with Neumannboundary condition.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.