E-Book, Englisch, 312 Seiten, Format (B × H): 152 mm x 229 mm
Arimondo Advances in Atomic, Molecular, and Optical Physics
1. Auflage 2009
ISBN: 978-0-08-095101-0
Verlag: Academic Press
Format: EPUB
Kopierschutz: 6 - ePub Watermark
E-Book, Englisch, 312 Seiten, Format (B × H): 152 mm x 229 mm
ISBN: 978-0-08-095101-0
Verlag: Academic Press
Format: EPUB
Kopierschutz: 6 - ePub Watermark
This volume continues the tradition of the Advances series. It contains contributions from experts in the field of atomic, molecular, and optical (AMO) physics. The articles contain some review material, but are intended to provide a comprehensive picture of recent important developments in AMO physics. Both theoretical and experimental articles are included in the volume.
• International experts
• Comprehensive articles
• New developments
Fachgebiete
Weitere Infos & Material
1;Front Cover;1
2;Advances in Atomic, Molecular, and Optical Physics;4
3;Copyright Page;5
4;Contents;6
5;Contributors;10
6;Preface;12
7;Chapter 1: Driven Ratchets for Cold Atoms;14
7.1;1. Introduction;15
7.2;2. Ratchets: Generalities;16
7.2.1;2.1. The Flashing Ratchet;16
7.2.2;2.2. The Rocking Ratchet;17
7.3;3. Symmetry and Transport in AC-Driven Ratchets;18
7.3.1;3.1. General Considerations;18
7.3.2;3.2. The Periodically Driven Rocking Ratchet;18
7.3.3;3.3. The Quasiperiodically Driven Rocking Ratchet;20
7.3.4;3.4. The Gating Ratchet;21
7.4;4. Cold Atom Ratchets;22
7.4.1;4.1. Dissipative Optical Lattices;22
7.4.2;4.2. Rocking Ratchet for Cold Atoms;27
7.4.3;4.3. Rocking Ratchet with Biharmonic Driving;29
7.4.3.1;4.3.1. Dissipation-Induced Symmetry Breaking;30
7.4.3.2;4.3.2. Rectification of Fluctuations, Current Reversals, and Resonant Activation in a System with Broken Hamiltonian Symmetry;32
7.4.4;4.4. Multifrequency Driving and Route to Quasiperiodicity;35
7.4.5;4.5. Gating Ratchet;40
7.5;5. Outlook;42
7.6;References;43
8;Chapter 2: Quantum Effects in Optomechanical Systems;46
8.1;1. Introduction;47
8.2;2. Cavity Optomechanics via Radiation-Pressure;51
8.2.1;2.1. Langevin Equations Formalism;52
8.2.2;2.2. Stability Analysis;55
8.2.3;2.3. Covariance Matrix and Logarithmic Negativity;56
8.3;3. Ground State Cooling;58
8.3.1;3.1. Feedback Cooling;59
8.3.1.1;3.1.1. Phase-Quadrature Feedback;59
8.3.1.2;3.1.2. Generalized Quadrature Feedback;62
8.3.2;3.2. Back-Action Cooling;64
8.3.3;3.3. Readout of the Mechanical Resonator State;66
8.4;4. Entanglement Generation with a Single Driven Cavity Mode;69
8.4.1;4.1. Intracavity Optomechanical Entanglement;70
8.4.2;4.2. Entanglement with Output Modes;71
8.4.3;4.3. Optical Entanglement between Sidebands;76
8.5;5. Entanglement Generation with Two Driven Cavity Modes;79
8.5.1;5.1. Quantum-Langevin Equations and Stability Conditions;79
8.5.2;5.2. Entanglement of the Output Modes;82
8.5.2.1;5.2.1. Optomechanical Entanglement;84
8.5.2.2;5.2.2. Purely Optical Entanglement between Output Modes;86
8.6;6. Cavity-Mediated Atom-Mirror Stationary Entanglement;88
8.7;7. Conclusions;93
8.8;Acknowledgments;94
8.9;References;95
9;Chapter 3: The Semiempirical Deutsch-Maumlrk Formalism: A Versatile Approach for the Calculation of Electron-Impact Ionization Cross Sections of Atoms, Molecules, Ions, and Clusters;100
9.1;1. Introduction;102
9.2;2. Theoretical Background;104
9.2.1;2.1. The DM Formalism;104
9.2.2;2.2. Other Approaches;106
9.3;3. Atoms;110
9.3.1;3.1. Ground-State Atoms;110
9.3.2;3.2. Atoms in Excited States;116
9.3.2.1;3.2.1. Metastable Rare Gas Atoms;117
9.3.2.2;3.2.2. He Metastable Ionization;119
9.3.2.3;3.2.3. Cd and Hg Metastable Ionization;120
9.4;4. Molecules, Molecular Radicals, and Clusters;122
9.4.1;4.1. Molecules;123
9.4.1.1;4.1.1. CF3X (X = H, Br, I) ;124
9.4.1.2;4.1.2. SiCl4 and TiCl4;126
9.4.2;4.2. Free Radicals and Other Unstable Species;129
9.4.2.1;4.2.1. CH3, CH2, CH;130
9.4.2.2;4.2.2. CFx and NFx (x = 1–3) ;132
9.4.3;4.3. Biomolecules;134
9.4.3.1;4.3.1. Uracil;134
9.4.3.2;4.3.2. DNA Bases;135
9.4.4;4.4. Clusters;137
9.4.4.1;4.4.1. C60;138
9.4.4.2;4.4.2. C60 and C70;142
9.5;5. Ions;145
9.5.1;5.1. Atomic Ions;145
9.5.1.1;5.1.1. Positive Atomic Ions;145
9.5.1.2;5.1.2. Negative Atomic Ions (Detachment);147
9.5.1.2.1;5.1.2.1. O- and L-;149
9.5.2;5.2. Molecular Ions;151
9.5.2.1;5.2.1. Positive Molecular Ions;152
9.5.2.1.1;5.2.1.1. C2H2+;152
9.5.2.1.2;5.2.1.2. CO+ and CD+;156
9.5.2.2;5.2.2. Negative Molecular Ions (Detachment);158
9.5.2.2.1;5.2.2.1. B2-, BO-, and CN-;158
9.6;6. Conclusions and Outlook;160
9.7;Acknowledgments;162
9.8;References;162
10;Chapter 4: Physics and Technology of Polarized Electron Scattering from Atoms and Molecules;170
10.1;1. Introduction;171
10.2;2. Spin-dependent Interactions;172
10.2.1;2.1. Electron Exchange;173
10.2.2;2.2. Spin-Orbit Interactions;174
10.2.3;2.3. Combinations of Spin-Orbit and Exchange Effects;176
10.2.4;2.4. Relevant Scattering Amplitudes: Characterization of Excited States and the Scattered Electron;178
10.2.5;2.5. Theory, Archiving, and Formalism;181
10.3;3. Atomic Targets;183
10.3.1;3.1. Exchange Scattering;183
10.3.1.1;3.1.1. (e,e) and (e,2e) Processes;183
10.3.1.2;3.1.2. (e,gammae) and (e,gamma2e) Processes;187
10.3.2;3.2. Mott Scattering;191
10.3.2.1;3.2.1. (e,e) Processes;191
10.3.2.2;3.2.2. (e,egamma) and (e,2e) Processes;194
10.3.3;3.3. Combinations of Spin-Orbit Coupling and Exchange Effects;194
10.3.3.1;3.3.1. The Fine-Structure Effect and its Variants;194
10.3.3.1.1;3.3.1.1. (e,2e) Experiments;194
10.3.3.1.2;3.3.1.2. (e,egamma) Experiments;199
10.3.3.2;3.3.2. Combinations of Exchange with Mott Scattering;201
10.3.3.2.1;3.3.2.1. (e,e) and (e,2e) Experiments;201
10.3.3.2.2;3.3.2.2. (e,egamma) Experiments;202
10.3.3.3;3.3.3. Resonant Effects;206
10.4;4. Molecular Targets;207
10.4.1;4.1. Simple Diatomic Molecules;209
10.4.1.1;4.1.1. The Exchange Interaction in Elastic Scattering;209
10.4.1.2;4.1.2. Exchange Effects in Inelastic Scattering;213
10.4.2;4.2. Chiral Molecular Targets;218
10.5;5. Developments in Polarized Electron Technology;228
10.5.1;5.1. Sources of Polarized Electrons;229
10.5.1.1;5.1.1. Photemission from GaAs and its Variants;229
10.5.1.2;5.1.2. Sources Based on Chemi-Ionization of He*;232
10.5.1.3;5.1.3. Novel Sources of Polarized Electrons;234
10.5.1.3.1;5.1.3.1. Field emission tips Field;234
10.5.1.3.2;5.1.3.2. Sources involving multiphoton processes;235
10.5.1.3.3;5.1.3.3. Spin filters;236
10.5.2;5.2. Polarimetry;240
10.5.2.1;5.2.1. Mott Polarimetry;240
10.5.2.2;5.2.2. Optical Polarimetry;247
10.6;Acknowledgments;249
10.7;References;249
11;Chapter 5: Multidimensional Electronic and Vibrational Spectroscopy: An Ultrafast Probe of Molecular Relaxation and Reaction Dynamics;262
11.1;1. Introduction, Background, and Analogies;263
11.1.1;1.1. Timescales and Orders of Magnitude;264
11.1.2;1.2. The AMO Perspective: Photon Echoes, Ramsey Fringes, and NMR;265
11.1.3;1.3. Diagrammatic Representation of Dynamical Evolution;271
11.1.3.1;1.3.1 Causality and the Absorptive Lineshape;274
11.1.4;1.4. Molecular Perspective;278
11.1.4.1;1.4.1 Coupling;278
11.1.4.2;1.4.2 Line Broadening;280
11.1.4.3;1.4.3 Orientation;280
11.1.4.4;1.4.4 Coherence;281
11.1.4.5;1.4.5 Spectral Diffusion;282
11.1.4.6;1.4.6 Chemical Exchange;283
11.1.4.7;1.4.7 Energy Transfer;284
11.2;2. Two-dimensional Electronic Spectroscopy;285
11.2.1;2.1. Idiosyncrasies and Technical Challenges of Multidimensional Electronic Spectroscopy;286
11.2.2;2.2. Experimental Implementations;286
11.2.2.1;2.2.1 Diffractive Optics;287
11.2.2.2;2.2.2 The Pump-Probe Geometry;289
11.2.3;2.3. Examples of 2D Electronic Spectroscopy Experiments;293
11.2.3.1;2.3.1 Energy Transfer in Light-Harvesting Systems;293
11.2.3.2;2.3.2 Vibrational Wavepacket Dynamics in 2DES;296
11.2.3.3;2.3.3 Understanding 2DES Spectra;298
11.3;3. Two-dimensional Vibrational Spectroscopy;300
11.3.1;3.1. Idiosyncrasies of Multidimensional IR Spectroscopy;301
11.3.2;3.2. Experimental Implementation;302
11.3.3;3.3. Examples of Equilibrium 2DIR Spectroscopy;305
11.3.3.1;3.3.1 The OH Stretch in Water;305
11.3.3.2;3.3.2 Vibrational Coherence;309
11.4;4. Future Directions;318
11.5;Acknowledgments;319
11.6;Appendix: Derivation of the T2-Dependent Coherence;320
11.7;References;323
12;Chapter 6: Fundamentals and Applications of Spatial Dissipative Solitons in Photonic Devices;336
12.1;1. Introduction;337
12.1.1;1.1. Basic Definitions and Scope;337
12.1.2;1.2. Phenomenology of Optical Spatial Dissipative Solitons (SDS);342
12.1.3;1.3. Basic Equations;344
12.1.4;1.4. Bistability and Multistability of SDS;346
12.2;2. Existence, Bifurcation Structure, and Dynamics of Single and Multiple SDS;350
12.2.1;2.1. Patterns, Dissipative Solitons, and Homoclinic Snaking;350
12.2.2;2.2. Homoclinic Snaking;355
12.2.3;2.3. Basic Properties and Dynamics of SDS;359
12.2.4;2.4. Snaking in Other Optical Models;361
12.2.5;2.5. "Tilted" Snaking due to Nonlocal Coupling;367
12.3;3. Cavity Soliton Lasers;371
12.3.1;3.1. Attractive Features of a Cavity Soliton Laser and Bistable Laser Schemes;371
12.3.2;3.2. Cavity Solitons in Lasers with Optical Injection;373
12.3.3;3.3. Cavity Solitons Based on Frequency-Selective Feedback;374
12.3.3.1;3.3.1 Scheme and Mechanism of Bistability;374
12.3.3.2;3.3.2 Experimental Investigations in VCSELs;376
12.3.3.3;3.3.3 Theoretical Treatment;381
12.3.4;3.4. Laser Cavity Solitons due to Saturable Absorption;385
12.3.4.1;3.4.1 General Theory and Early Experiments;385
12.3.4.2;3.4.2 Modeling and Design of Semiconductor-Based Devices;386
12.3.4.3;3.4.3 Experimental Realization Using Face-to-Face VCSELs;388
12.4;4. Spatial Dissipative Solitons due to Spatially Periodic Modulations;390
12.4.1;4.1. Spatial Dissipative Solitons due to Intracavity Photonic Crystals;390
12.4.2;4.2. Discrete Spatial Dissipative Solitons;398
12.5;5. Phase Fronts and Locked Spots;400
12.6;6. Applications of Spatial Dissipative Solitons;411
12.6.1;6.1. Positioning of SDS and All-Optical Memories;411
12.6.2;6.2. Exploring the Mobility of SDS;415
12.6.3;6.3. All-Optical Delay Line;416
12.6.4;6.4. Delay Lines in a CSL and Spontaneous Motion of LCS;418
12.6.5;6.5. Soliton Force Microscopy;419
12.7;7. Conclusions;422
12.8;Acknowledgments;423
12.9;References;423
13;Index;436
14;Contents of Volumes in this Serial;442




