Buch, Englisch, 862 Seiten, Format (B × H): 194 mm x 253 mm, Gewicht: 2 g
Volume 2: K-Theory
Buch, Englisch, 862 Seiten, Format (B × H): 194 mm x 253 mm, Gewicht: 2 g
ISBN: 978-0-19-853276-7
Verlag: Oxford University Press
Professor Atiyah is one of the greatest living mathematicians and is well known throughout the mathematical world. He is a recipient of the Fields Medal, the mathematical equivalent of the Nobel Prize, and is still at the peak of his career. His huge number of published papers, focusing on the areas of algebraic geometry and topology, have here been collected into six volumes, divided thematically for easy reference by individuals interested in a particular subject.
These papers, covering the years 1959-62, consist mainly of Michael Atiyah's joint papers with F. Hirzebruch on K-Theory.
Autoren/Hrsg.
Fachgebiete
- Naturwissenschaften Physik Physik Allgemein
- Mathematik | Informatik Mathematik Geometrie Elementare Geometrie: Allgemeines
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Populärwissenschaftliche Werke
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
Weitere Infos & Material
EARLY PAPERS ON K-THEORY: Riemann-Roch theorems for differentiable manifolds. Quelques théorèmes de non-plongement pour les variétés differentiables. On complex Stiefel manifolds. Bott periodicity and the parallelizability of the spheres. Vector bundles and homogeneous spaces. Characters and cohomology of finite groups. Cohomologie-operationen und Charakteristische Klassen. Charakteristische Klassen und Anwendungen. Immersions and embeddings of manifolds. Vector bundles and K"nneth formula. Bordism and cobordism. Thom complexes. Analytical cycles on complex manifolds. The Riemann-Roch theorem for analytical embeddings. The Grothendieck ring in geometry and topology. LATER PAPERS ON K-THEORY: Clifford modules. On the periodicity theorem for complex vector bundles. On the K-theory of compact Lie groups. K-theory and the Hopf invariant. K-theory and reality. Power operations in K-theory. K-theory. Bott periodicity and the index of elliptical operators. Group representations, lambda-rings and the J-homomorphism. Algebraic topology of operators in Hilbert space. Equivariant K-theory and completion. Vector fields on manifolds. Exponential isomorphisms for lambda-rings. Vector fields with finite singularities. Elliptical operators and singularities of vector fields. Compct Lie groups and the stable homotiopy of spheres. A survey of K-theory.




