Bathula / Benet Nirmala / Dvornek | Machine Learning in Clinical Neuroimaging | Buch | 978-3-031-78760-7 | sack.de

Buch, Englisch, 178 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

Bathula / Benet Nirmala / Dvornek

Machine Learning in Clinical Neuroimaging

7th International Workshop, MLCN 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings
Erscheinungsjahr 2024
ISBN: 978-3-031-78760-7
Verlag: Springer Nature Switzerland

7th International Workshop, MLCN 2024, Held in Conjunction with MICCAI 2024, Marrakesh, Morocco, October 10, 2024, Proceedings

Buch, Englisch, 178 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 300 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-031-78760-7
Verlag: Springer Nature Switzerland


This book constitutes the refereed proceedings of the 7th International Workshop on Machine Learning in Clinical Neuroimaging, MLCN 2024, held in Conjunction with MICCAI 2024 in Marrakesh, Morocco, on 10th October 2024. 

The 16 full papers presented in this volume were carefully reviewed and selected from 28 submissions. 

They are grouped into the following topics: machine learning; clinical applications.

Bathula / Benet Nirmala / Dvornek Machine Learning in Clinical Neuroimaging jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


.- Machine learning.
.- Parkinson's Disease Detection from Resting State EEG using Multi-Head Graph  Structure Learning with Gradient Weighted Graph Attention Explanations.
.- ProxiMO: Proximal Multi-Operator Networks for Quantitative Susceptibility Mapping.
.- Brain-Cognition Fingerprinting via Graph-GCCA with Contrastive Learning.
.- HyperBrain: Anomaly Detection for Temporal Hypergraph Brain Networks.
.- SpaRG - Sparsely Reconstructed Graphs for Generalizable fMRI Analysis.
.- A Lightweight 3D Conditional Diffusion Model for Self-Explainable Brain Age  Prediction in Adults and Children.
.- SOE: SO(3)-Equivariant 3D MRI Encoding.
.- Towards a foundation model for cortical folding.
.- Clinical Applications.
.- A Lesion-aware Edge-based Graph Neural Network for Predicting Language Ability in  Patients with Post-stroke Aphasia.
.- DISARM: Disentangled Scanner-free Image Generation via Unsupervised Image2Image 
Translation.
.- Segmenting Small Stroke Lesions with Novel Labeling Strategies.
.- A Progressive Single-Modality to Multi-Modality Classification Framework for  Alzheimer’s Disease Sub-type Diagnosis.
.- Surface-based parcellation and vertex-wise analysis of ultra high-resolution ex vivo 7  tesla MRI in Alzheimer's disease and related dementias.
.- Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in Autism  Detection.
.- Is Your Style Transfer Doing Anything Useful? An Investigation Into Hippocampus  Segmentation and the Role of Preprocessing.
.- GAMing the Brain: Investigating the Cross-modal Relationships between Functional  Connectivity and Structural Features using Generalized Additive Models.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.