Baumeister | Stable Solution of Inverse Problems | E-Book | www.sack.de
E-Book

E-Book, Deutsch, 256 Seiten, eBook

Reihe: Advanced Lectures in Mathematics

Baumeister Stable Solution of Inverse Problems


1987
ISBN: 978-3-322-83967-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Deutsch, 256 Seiten, eBook

Reihe: Advanced Lectures in Mathematics

ISBN: 978-3-322-83967-1
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Baumeister Stable Solution of Inverse Problems jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


I Basic Concepts.- 1 Introduction.- 1.1 Inverse problems.- 1.2 Some examples of inverse problems.- 1.3 Analysis of inverse problems.- 2 Ill-posed problems.- 2.1 General properties.- 2.2 Restoration of continuity in the linear case.- 2.3 Stability estimates.- 3 Regularization.- 3.1 Reconstruction from non-exact data.- 3.2 Preliminary results on Tikhonov’s method.- 3.3 Regularizing schemes.- 3.4 A tutorial example: The reconstruction of a derivative.- 3.5 Optimal reconstruction of linear functionals.- II Regularization Methods.- 4 The singular value decomposition.- 4.1 Compact operators.- 4.2 The spectrum of compact selfadjoint operators.- 4.3 The singular value decomposition.- 4.4 The min-max principle.- 4.5 The asymptotics of singular values.- 4.6 Picard’s criterion.- 5 Applications of the singular value decomposition.- 5.1 Hilbert scales.- 5.2 Convergence of regularizing schemes.- 5.3 On the use of the conjugate gradient method.- 5.4 n-widths.- 6 The method of Tikhonov.- 6.1 The generalized inverse.- 6.2 The classical method of Tikhonov.- 6.3 Error bounds for Tikhonov regularization in Hilbert scales.- 6.4 On discrepancy principles.- 6.5 Discretization in Tikhonov’s method.- 7 Regularization by discretization.- 7.1 Discretization by projection methods.- 7.2 Quasioptimality and robustness.- 7.3 Specific methods.- 7.4 Asymptotic estimates.- III Least Squares Solutions of Systems of Linear Equations.- 8 Least squares problems.- 8.1 The singular value decomposition of a matrix.- 8.2 The pseudo-inverse.- 8.3 Least squares solutions.- 8.4 Perturbation results.- 8.5 Application: Fitting of data.- 9 Numerical aspects of least squares problems.- 9.1 Calculation of A+: The factorization approach.- 9.2 Rank decision.- 9.3 Cross-validation.- 9.4 Successive approximation.- 9.5 The ART-algorithm.- IV Specific Topics.- 10 Convolution equations.- 10.1 The Fourier transform.- 10.2 Regularization of convolution equations.- 10.3 On the discretization of convolution equations.- 10.4 Reconstruction by successive approximation.- 11 The final value problem.- 11.1 Introduction.- 11.2 The mild solution of the forward problem.- 11.3 The Hilbert scales Ea,t.- 11.4 Regularizing schemes.- 12 Parameter identification.- 12.1 Identifiability of parameters in dynamical systems.- 12.2 Identification in linear dynamic systems.- 12.3 Identification in bilinear structures.- 12.4 Adaptive identification.- References.- Notations.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.