Ben Amor / Quost / Theobald | Scalable Uncertainty Management | Buch | 978-3-030-35513-5 | www.sack.de

Buch, Englisch, 452 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

Reihe: Lecture Notes in Computer Science

Ben Amor / Quost / Theobald

Scalable Uncertainty Management

13th International Conference, SUM 2019, Compiègne, France, December 16-18, 2019, Proceedings
1. Auflage 2019
ISBN: 978-3-030-35513-5
Verlag: Springer

13th International Conference, SUM 2019, Compiègne, France, December 16-18, 2019, Proceedings

Buch, Englisch, 452 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 698 g

Reihe: Lecture Notes in Computer Science

ISBN: 978-3-030-35513-5
Verlag: Springer


This book constitutes the refereed proceedings of the 13th International Conference on Scalable Uncertainty Management, SUM 2019, which was held in Compiègne, France, in December 2019.
The 25 full, 4 short, 4 tutorial, 2 invited keynote papers presented in this volume were carefully reviewed and selected from 44 submissions. The conference is dedicated to the management of large amounts of complex, uncertain, incomplete, or inconsistent information. New approaches have been developed on imprecise probabilities, fuzzy set theory, rough set theory, ordinal uncertainty representations, or even purely qualitative models.

Ben Amor / Quost / Theobald Scalable Uncertainty Management jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


An Experimental Study on the Behaviour of Inconsistency Measures.- Inconsistency Measurement Using Graph Convolutional Networks for Approximate Reasoning with Abstract Argumentation Frameworks: A Feasibility Study.- The Hidden Elegance of Causal Interaction Models.- Computational Models for Cumulative Prospect Theory: Application to the Knapsack Problem Under Risk.- On a new evidential C-Means algorithm with instance-level constraints.- Hybrid Reasoning on a Bipolar Argumentation Framework.- Active Preference Elicitation by Bayesian Updating on Optimality Polyhedra.- Selecting Relevant Association Rules From Imperfect Data.- Evidential classification of incomplete data via imprecise relabelling: Application to plastic sorting.- An analogical interpolation method for enlarging a training dataset.- Towards a reconciliation between reasoning and learning - A position paper.- CP-nets, p-pref nets, and Pareto dominance.- Measuring Inconsistency through Subformula Forgetting

Explaining Hierarchical Multi-Linear Models.- Assertional Removed Sets Merging of DL-Lite Knowledge Bases.- An Interactive Polyhedral Approach for Multi-Objective Combinatorial Optimization with Incomplete Preference Information.- Open-Mindedness of Gradual Argumentation Semantics.- Approximate Querying on Property Graphs.- Learning from Imprecise Data: Adjustments of Optimistic and Pessimistic Variants.- On cautiousness and expressiveness in interval-valued logic.- Preference Elicitation with Uncertainty: Extending Regret Based Methods with Belief Functions.- Evidence Propagation and Consensus Formation in Noisy Environments.- Order-Independent Structure Learning of Multivariate Regression Chain Graphs.- l Comparison of analogy-based methods for predicting preferences.- Using Convolutional Neural Network in Cross-Domain Argumentation Mining Framework.- ConvNet and Dempster-Shafer Theory for Object Recognition.- On learning evidential contextual corrections from soft labels using a measureof discrepancy between contour functions.- Efficient Mo ¨bius Transformations and their applications to D-S Theory.- From shallow to deep interactions between knowledge representation, reasoning and machine learning.- Dealing with Continuous Variables in Graphical Models.- Towards Scalable and Robust Sum-Product Networks.- Learning Models over Relational Data:A Brief Tutorial.- Subspace Clustering and Some Soft Variants.- Algebraic Approximations for Weighted Model Counting.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.