E-Book, Englisch, 404 Seiten
Biermann / Hollmann Thermal Effects in Complex Machining Processes
1. Auflage 2018
ISBN: 978-3-319-57120-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Final Report of the DFG Priority Programme 1480
E-Book, Englisch, 404 Seiten
Reihe: Lecture Notes in Production Engineering
ISBN: 978-3-319-57120-1
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This contributed volume contains the research results of the priority programme (PP) 1480 'Modelling, Simulation and Compensation of Thermal Effects for Complex Machining Processes', funded by the German Research Society (DFG). The topical focus of this programme is the simulation-based prediction and compensation of thermally induced workpiece deviations and subsurface damage effects. The approach to the topic is genuinely interdisciplinary, covering all relevant machining operations such as turning, milling, drilling and grinding. The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students.
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;6
2;Introduction;8
3;Part I Collaboration within the Working Groups;10
4;2 Temperature Measurements and Heat Partitioning in Machining Processes;11
4.1;Abstract;11
4.2;1 Introduction;11
4.3;2 Objectives;12
4.4;3 Temperature Measurement Techniques;13
4.4.1;3.1 Contacting Thermometers;13
4.4.1.1;3.1.1 Resistance Thermometers;13
4.4.1.2;3.1.2 Thermocouples;13
4.4.2;3.2 Radiation Thermometers;14
4.4.2.1;3.2.1 Radiation Detectors;15
4.4.2.2;3.2.2 Types of Radiation Thermometers;16
4.5;4 Calibration of Thermometers in the Priority Programme;16
4.5.1;4.1 Contacting Thermometers;16
4.5.1.1;4.1.1 Resistance Thermometers;17
4.5.1.2;4.1.2 Thermocouples;18
4.5.1.3;4.1.3 Calibration Procedure;18
4.5.2;4.2 Radiation Thermometers;19
4.5.2.1;4.2.1 Calibration Setup;19
4.5.2.2;4.2.2 Calibration Procedure;20
4.6;5 Temperature Measurement Setups and Heat Partitioning;21
4.6.1;5.1 Selected Temperature Measurements Setups;21
4.6.1.1;5.1.1 Thermocouples;21
4.6.1.2;5.1.2 Infrared Cameras;23
4.6.2;5.2 Heat Partition to the Workpiece;24
4.7;6 Summary and Conclusions;26
4.8;Acknowledgements;27
4.9;References;27
5;Optimization and Compensation Strategies;28
5.1;1 Introduction;28
5.2;2 Optimization Strategies;29
5.3;3 Compensation Strategies;30
5.4;References;31
6;4 Material Modelling;33
6.1;Abstract;33
6.2;1 Introduction;33
6.3;2 Material Laws;34
6.4;3 Friction;34
6.5;4 Phase Transformations;35
6.6;Acknowledgements;36
6.7;References;36
7;Part II Final Reports of the Research Projects;37
8;Improvement of the Machining Accuracy in Dry Turning of Aluminum Metal Matrix Composites via Experiments and Finite Element Simulations;38
8.1;1 Introduction;39
8.2;2 Experimental Investigations;39
8.3;3 Finite Element Modeling;43
8.3.1;3.1 Local Model of Chip Formation;44
8.3.2;3.2 Global Model of the Workpiece;47
8.3.3;3.3 Global Model of the Tool;51
8.4;4 Approach for the Compensation of the Workpiece and Tool Deformation;53
8.5;5 Validation of the FE Models;54
8.5.1;5.1 Local Model;54
8.5.2;5.2 Global Models;55
8.6;6 Thermal Load of the Workpiece;57
8.7;7 Machining Accuracy and Surface Integrity;58
8.8;8 Results of the Compensation of the Workpiece and Tool Deformation;60
8.9;9 Conclusion;62
8.10;References;63
9;Modelling and Compensation of Thermoelastic Workpiece Deformation in Dry Cutting;66
9.1;1 Introduction;66
9.2;2 Fundamental Investigations;67
9.2.1;2.1 In-situ Recording of Chip Formation in Orthogonal Cutting;68
9.2.2;2.2 Friction Experiment Under Cutting Conditions;69
9.2.3;2.3 Shear Zone Contact Conductance Model;73
9.3;3 Modelling and Compensation of Thermoelastic Workpiece Deformation in Dry Turning;77
9.3.1;3.1 Mesoscopic FE-Modelling;77
9.3.2;3.2 Heat Flux into the Workpiece During Orthogonal Turning;81
9.3.3;3.3 Comparison of the Heat Flux Between IHCP and Mesoscopic FE-Model;86
9.3.4;3.4 Minimization of Workpiece Warming;87
9.3.5;3.5 Macroscopic FE-Modelling for Thermoelastic Workpiece Deformation;90
9.4;4 Conclusion and Future Work;95
9.5;References;96
10;Thermo-Mechanical Simulation of Hard Turning with Macroscopic Models;98
10.1;1 Introduction;98
10.2;2 Test Conditions and Measurement Methods;100
10.2.1;2.1 Cutting Experiments;100
10.2.2;2.2 Thermal Experiments;101
10.3;3 Experimental Results;103
10.3.1;3.1 Cutting Forces;103
10.3.2;3.2 Workpiece Surface Temperature;104
10.3.3;3.3 Heat-Up and Cooling Rates;105
10.4;4 A Multi-mechanism Model for Cutting Simulations;105
10.4.1;4.1 A Thermodynamic Framework for Visco-Plasticity and Phase Transformations Based on the Concept of Generalized Stresses;107
10.4.2;4.2 A Prototype Model for Hard Turning Simulation;110
10.5;5 Parameter Identification;114
10.5.1;5.1 Mechanical Tests for Visco-Plasticity and Hardness Dependency;114
10.5.2;5.2 Dilatometer Tests for TRIP-strains;118
10.6;6 Cutting Simulations in ABAQUS for Testing the Model;121
10.7;7 Simulation in Deform;126
10.7.1;7.1 Modelling in Deform;126
10.7.2;7.2 Influence of the Cutting Edge Geometry on the Thermo-Mechanical Work Piece Load;127
10.7.3;7.3 Impact of Dissimilar Stress States on Work Piece Heat Balance;127
10.7.4;7.4 Method for Analysis of the Influence of Physical Phenomena on the Workpiece Stress Distribution During Hard Turning;129
10.8;8 Model-Based Optimization of the Hard Turning Process;129
10.8.1;8.1 Process Parameters;129
10.8.2;8.2 Machining Strategies;131
10.9;9 Summary and Outlook;132
10.10;References;133
11;8 Modeling of Orthogonal Metal Cutting Using Adaptive Smoothed Particle Hydrodynamics;136
11.1;Abstract;136
11.2;1 Introduction;136
11.3;2 Smoothed Particle Hydrodynamics for Solid Continua;137
11.3.1;2.1 Basic Equations of Continuum Mechanics;137
11.3.2;2.2 Plasticity and Fracture Behavior;138
11.3.3;2.3 Boundary Contact Force;139
11.3.4;2.4 Variable Smoothing Length;139
11.3.5;2.5 Local Adaptive Particle Refinement;140
11.4;3 Orthogonal Metal Cutting Simulation;141
11.4.1;3.1 Model Setup;141
11.4.2;3.2 Results;142
11.5;4 Conclusion;145
11.6;References;145
12;9 Experimental and Simulative Modeling of Drilling Processes for the Compensation of Thermal Effects;147
12.1;Abstract;147
12.2;1 Introduction;148
12.3;2 Experimental Investigations;148
12.3.1;2.1 Orthogonal Turning Experiments;148
12.3.2;2.2 Drilling Experiments;152
12.3.3;2.3 Investigation of Friction;156
12.3.4;2.4 Metallurgical Investigations;160
12.4;3 Simulation Models;160
12.4.1;3.1 2D Chip Formation Simulation;160
12.4.1.1;3.1.1 Material Model;161
12.4.1.2;3.1.2 Friction Modeling;161
12.4.1.3;3.1.3 Phase Transformations;162
12.4.1.4;3.1.4 Minimum Quantity Lubrication;163
12.4.2;3.2 3D Drilling Simulation;165
12.4.2.1;3.2.1 Simplified Drilling Model;166
12.4.2.2;3.2.2 Modeling of Thermal and Mechanical Loads;167
12.4.2.3;3.2.3 Modeling Phase Transformations;168
12.4.2.4;3.2.4 Modeling Minimum Quantity Lubrication;168
12.4.3;3.3 Advanced Drilling Model;170
12.4.3.1;3.3.1 Modeling of Thermal and Mechanical Loads;170
12.4.3.2;3.3.2 Modeling Efficiency;171
12.4.3.3;3.3.3 Compensation Strategies for Thermal Effects;174
12.4.3.3.1;Optimization of Machining Strategies;174
12.4.3.3.2;Thermal Management;176
12.4.3.3.3;3D Circular Milling;178
12.5;Acknowledgements;181
12.6;References;181
13;Modelling, Simulation and Compensation of Thermomechanically Induced Deviations in Deep-Hole Drilling with Minimum Quantity Lubrication;183
13.1;1 Introduction;184
13.2;2 Technological Investigations;185
13.2.1;2.1 Experimental Conditions;185
13.2.2;2.2 Thermomechanical Workpiece Load;187
13.2.3;2.3 Workpiece Distortion and Deviations;191
13.2.4;2.4 High-Performance Deep-Hole Drilling;194
13.3;3 Microscopic Modelling and Simulation;197
13.3.1;3.1 Thermoplastic Model with Frictional Contact;198
13.3.2;3.2 Chip Formation;199
13.3.3;3.3 Discretising Elasto-Plastic Contact Problems Efficiently;200
13.3.4;3.4 Solving Elasto-Plastic Contact Problems Efficiently;200
13.4;4 Macroscopic Modelling and Simulation;201
13.4.1;4.1 Thermoelastic Model with Secondary Heat Source;202
13.4.2;4.2 Fictitious Domain Approach;203
13.4.3;4.3 A Residual Error Estimator;206
13.4.4;4.4 Further Studies;210
13.5;5 Simulation and Compensation of Thermomechanically Induced Deviations;211
13.5.1;5.1 Compensation Procedure;213
13.6;6 Conclusions;217
13.7;References;218
14;Thermomechanical Deformation of Complex Workpieces in Milling and Drilling Processes;221
14.1;1 Introduction;222
14.2;2 Experimental Investigation;223
14.2.1;2.1 Mechanical Load;224
14.2.2;2.2 Thermal Load;224
14.2.3;2.3 Thermal Balancing;226
14.3;3 Process Model;227
14.3.1;3.1 Geometric Tool Modeling;228
14.3.2;3.2 Contact-Zone Analysis;229
14.3.3;3.3 The Force Model;231
14.3.4;3.4 Empirical Model for the Heat Induced by the Process;234
14.3.5;3.5 Workpiece Load;234
14.4;4 Workpiece Model;236
14.4.1;4.1 Thermomechanical Extended Dexel-Model;236
14.4.2;4.2 Thermomechanical Finite Element Model;237
14.4.3;4.3 Linking of Dexel and FE Models;238
14.4.4;4.4 Shape Deviation Prediction;240
14.5;5 Optimization;241
14.5.1;5.1 Optimal Roughing;243
14.5.2;5.2 NC Path Optimization;244
14.5.3;5.3 Tool Path Optimization by Tool Axis Adaption;246
14.5.4;5.4 Target Workpiece Comparison;247
14.5.5;5.5 Reference Processes;248
14.5.6;5.6 Analysis and Axis Adaption of the Reference Processes;248
14.6;6 Conclusion and Discussion;251
14.7;References;252
15;12 Compensation Strategies for Thermal Effects in Dry Milling;253
15.1;Abstract;253
15.2;1 Introduction;256
15.3;2 Objectives, Procedure and Working Programme;257
15.3.1;2.1 Objectives;257
15.3.2;2.2 Procedure;258
15.3.2.1;2.2.1 Hybrid Model and Optimisation Procedure;258
15.3.2.2;2.2.2 Simultaneous Analysis and Design;260
15.3.3;2.3 Working Programme and Tool Data;261
15.4;3 Modelling Workpiece Shape Deviations Caused by Milling Induced Source Stresses;262
15.4.1;3.1 Analytical Model for the Calculation of Source Stresses;262
15.4.2;3.2 Multilayer Model for Source Stresses;262
15.4.3;3.3 Determination of Source Stresses;264
15.4.3.1;3.3.1 Experimental Programme;265
15.4.3.2;3.3.2 Source Stress Regression Model;266
15.4.4;3.4 Finite Element Formulation of the Source Stress Model;267
15.4.4.1;3.4.1 Derivation of the Mathematical Model;267
15.4.4.2;3.4.2 Model Verification;268
15.5;4 Modelling Workpiece Shape Deviations Caused by Thermo-Elastic Strains;269
15.5.1;4.1 Determination of Heat Flux Densities;269
15.5.1.1;4.1.1 Experimental Programme;270
15.5.1.2;4.1.2 Finite Element Model;270
15.5.1.3;4.1.3 Identification of Heat Flux Densities;270
15.5.1.4;4.1.4 Thermo-Elastic Regression Model;271
15.5.2;4.2 Modelling Workpiece Shape Deviations Caused by Thermo-Elastic Strains;271
15.5.3;4.3 Model Reductions for the Thermo-Elastic Simulations;273
15.6;5 Optimisation of Milling Strategies;273
15.6.1;5.1 Distinction Between Discrete and Continuous Variables;273
15.6.2;5.2 Minimisation of Shape Deviations Caused by Source Stresses—Optimisation Step 1;274
15.6.2.1;5.2.1 Investigation of Discrete Variables—Milling Strategies;274
15.6.2.2;5.2.2 Mathematical Formulation of the Optimisation of Continuous Variables;275
15.6.2.3;5.2.3 Numerical Optimisation Results and Discussion;276
15.6.3;5.3 Minimisation of Total Shape Deviations—Optimisation Step 2;280
15.6.3.1;5.3.1 Mathematical Formulation;280
15.6.3.2;5.3.2 Numerical Optimisation Results and Discussion;281
15.7;6 Validation of the Optimised Milling Strategies;282
15.7.1;6.1 Procedure;282
15.7.2;6.2 Results;283
15.7.2.1;6.2.1 Machining of Stress Relief Annealed Workpieces;283
15.7.2.2;6.2.2 Machining of Workpieces Containing Residual Stress;285
15.8;7 Summary and Conclusions;287
15.8.1;7.1 Hybrid Model;287
15.8.2;7.2 Optimisation of Milling Strategies;287
15.8.3;7.3 Validation;288
15.9;Acknowledgements;289
15.10;References;289
16;Modeling, Simulation and Compensation of Thermomechanically Induced Material Deformation in Dry NC Milling Processes;291
16.1;1 Introduction;292
16.2;2 Related Work;293
16.3;3 Modeling of Workpiece Deformations in Milling Processes;296
16.3.1;3.1 Finite Element Method;296
16.3.2;3.2 GP Process Simulation;302
16.3.3;3.3 GP-FEM Linkage;308
16.3.4;3.4 FEM Update Intervals;310
16.4;4 Validation of the Simulation Approach;311
16.4.1;4.1 Experimental Setup;311
16.4.2;4.2 Simulation of the Experiment;313
16.4.3;4.3 Results;314
16.5;5 Compensation of Thermomechanical Workpiece Deformations;317
16.5.1;5.1 Deformation of the NC Milling Path;317
16.5.2;5.2 Validation of the Deformed Milling Path;318
16.6;6 Summary and Outlook;319
16.7;References;320
17;14 Coupling Analytical and Numerical Models to Simulate Thermomechanical Interaction During the Milling Process of Thin-Walled Workpieces;323
17.1;Abstract;323
17.2;1 Motivation;324
17.3;2 Objective and Approach;325
17.4;3 Project Results;331
17.5;4 Conclusion;345
17.6;Acknowledgements;347
17.7;References;347
18;15 Modeling, Simulation and Compensation of Thermal Effects in Gear Hobbing;349
18.1;Abstract;349
18.2;1 Introduction;349
18.3;2 Hobbing of Large Ring Gears;350
18.4;3 Temperature Measurement;352
18.5;4 Temperature Measurement in Industry;357
18.6;5 Simulation Setup;360
18.7;6 Simulation Backgrounds—Dexel;361
18.8;7 Simulation Backgrounds—Kinematic;361
18.9;8 Simulation Backgrounds—FE-Dexel Coupling;363
18.10;9 FE-Dexel Coupling: Remarks/Benefits;364
18.11;10 Simulation Results;365
18.12;11 Conclusion;367
18.13;Acknowledgements;368
18.14;References;368
19;Modelling and Simulation of Internal Traverse Grinding---From Micro-thermo-mechanical Mechanisms to Process Models;370
19.1;1 Introduction;371
19.1.1;1.1 Simulation Framework;371
19.2;2 Experiments and Thermo-Mechanical Loading During ITG;372
19.3;3 Geometric-Kinematic Simulation;379
19.4;4 Finite Element Modelling of ITG;381
19.4.1;4.1 Single Grain Finite Element Model;381
19.4.2;4.2 Bridging Approach;387
19.5;5 Process Model and Compensation Strategies;394
19.5.1;5.1 Compensation Strategies;397
19.5.2;5.2 Results;400
19.6;6 Conclusions and Outlook;401
19.7;References;403




