Blazek | Computational Fluid Dynamics | E-Book | www.sack.de
E-Book

E-Book, Englisch, 466 Seiten

Blazek Computational Fluid Dynamics

Principles and Applications
3. Auflage 2015
ISBN: 978-0-12-801172-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)

Principles and Applications

E-Book, Englisch, 466 Seiten

ISBN: 978-0-12-801172-0
Verlag: Elsevier Science & Techn.
Format: EPUB
Kopierschutz: Adobe DRM (»Systemvoraussetzungen)



Computational Fluid Dynamics: Principles and Applications, Third Edition presents students, engineers, and scientists with all they need to gain a solid understanding of the numerical methods and principles underlying modern computation techniques in fluid dynamics. By providing complete coverage of the essential knowledge required in order to write codes or understand commercial codes, the book gives the reader an overview of fundamentals and solution strategies in the early chapters before moving on to cover the details of different solution techniques. This updated edition includes new worked programming examples, expanded coverage and recent literature regarding incompressible flows, the Discontinuous Galerkin Method, the Lattice Boltzmann Method, higher-order spatial schemes, implicit Runge-Kutta methods and parallelization. An accompanying companion website contains the sources of 1-D and 2-D Euler and Navier-Stokes flow solvers (structured and unstructured) and grid generators, along with tools for Von Neumann stability analysis of 1-D model equations and examples of various parallelization techniques. - Will provide you with the knowledge required to develop and understand modern flow simulation codes - Features new worked programming examples and expanded coverage of incompressible flows, implicit Runge-Kutta methods and code parallelization, among other topics - Includes accompanying companion website that contains the sources of 1-D and 2-D flow solvers as well as grid generators and examples of parallelization techniques

Jiri Blazek received his MSc in Aerospace Engineering from the Institute of Technology in Aachen, Germany in 1989. He continued his research at the German Aerospace Center, DLR, and in 1995 obtained his PhD in Aerospace Engineering, focusing on CFD methods for high-speed flows, from the University of Braunschweig, Germany. Following this, Dr. Blazek worked as a research scientist at ABB Turbosystems in Baden, Switzerland, moving to ABB Corporate Research Ltd. (now ALSTOM Power Ltd.) as researcher and project leader for CFD code development in the fields of gas and steam turbines. He was appointed as senior research scientist at the Center for Simulation of Advanced Rockets, University of Illinois at Urbana-Champaign, USA and in 2005 founded his own consultancy and software development firm, CFD Consulting and Analysis, in Sankt Augustin, Germany. Dr. Blazek's main research interests include: CFD code development - especially in the area of unstructured grids, aircraft and turbomachinery aerodynamics; shape optimization; and data visualization.
Blazek Computational Fluid Dynamics jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


List of Symbols


c Jacobian of convective fluxes

v Jacobian of viscous fluxes

b constant depth of control volume in two dimensions

c speed of sound

cp specific heat coefficient at constant pressure

cv specific heat coefficient at constant volume

? vector of characteristic variables

Cm molar concentration of species m (= ?Ym/Wm)

CS Smagorinsky constant

v? curl of ???×v?=?w?y-?v?z,?u?z-?w?x,?v?x-?u?y

d distance

D diagonal part of implicit operator

? artificial dissipation

Dm effective binary diffusivity of species m

v? divergence of ???·v?=?u?x+?v?y+?w?z

e internal energy per unit mass

E total energy per unit mass

f Fourier symbol of the time-stepping operator

?e vector of external volume forces

? flux vector

¯¯ flux tensor

g amplification factor

? grid velocity

h enthalpy

?h local grid (cell) size

H total (stagnation) enthalpy

- Hessian matrix (matrix of second derivatives)

I imaginary unit (=-1)

 identity matrix

¯¯ unit tensor

h2h interpolation operator

h2h restriction operator

2hh prolongation operator

- system matrix (implicit operator)

J-1 inverse of determinant of coordinate transformation Jacobian

k thermal conductivity coefficient

K turbulent kinetic energy

Kf , Kb forward and backward reaction rate constants

lT turbulent length scale

L strictly lower part of implicit operator

Lij components of Leonard stress tensor

M Mach number

- mass matrix

? unit normal vector (outward pointing) of control volume face

nx , ny , nz components of the unit normal vector in x-, y-, z-direction

N number of grid points, cells, or control volumes

NA number of adjacent control volumes

NF number of control volume faces

p static pressure

P production term of kinetic turbulent energy

- transformation matrix from primitive to conservative variables

-L,P-R left and right preconditioning matrix (Krylov-subspace methods)

Pr Prandtl number

?h heat flux due to radiation, chemical reactions, etc.

Q source term

? position vector (Cartesian coordinates); residual (GMRES)

?ij vector from point i to point j

R specific gas constant

Ru universal gas constant (= 8314.34 J/kg mol K)

? residual, right-hand side

?* smoothed residual

- rotation matrix

Re Reynolds number

?m rate of change of species m due to chemical reactions

? face vector (n??S)

Sij components of strain-rate tensor

Sx , Sy , Sz Cartesian components of the face vector

dS surface element

?S length/area of a face of a control volume

t time

tT turbulent time scale

?t time step

T static temperature

- matrix of right eigenvectors

--1 matrix of left eigenvectors

u, v, w Cartesian velocity components

ut skin friction velocity =tw/?)

U general (scalar) flow variable

U strictly upper part of implicit operator

? vector of general flow variables

? velocity vector with the components u,v, and w

V contravariant velocity

Vr contravariant velocity relative to grid motion

Vt contravariant velocity of a face of the control volume

Wm molecular weight of species m

? vector of conservative variables (= [?, ?u, ?v, ?w, ?E]T)

?p vector of primitive variables (= [p, u, v, w, T]T)

x, y, z Cartesian coordinate system

?x cell size in x-direction

y+ nondimensional wall coordinate (= ? yut/µw)

Ym mass fraction of species m

z Fourier symbol of the spatial operator

a angle of attack, inlet...



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.