Borja / Lu / Plawsky Dielectric Breakdown in Gigascale Electronics
1. Auflage 2016
ISBN: 978-3-319-43220-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
Time Dependent Failure Mechanisms
E-Book, Englisch, 109 Seiten, eBook
Reihe: SpringerBriefs in Materials
ISBN: 978-3-319-43220-5
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book focuses on the experimental and theoretical aspects of the time-dependent breakdown of advanced dielectric films used in gigascale electronics. Coverage includes the most important failure mechanisms for thin low-k films, new and established experimental techniques, recent advances in the area of dielectric failure, and advanced simulations/models to resolve and predict dielectric breakdown, all of which are of considerable importance for engineers and scientists working on developing and integrating present and future chip architectures. The book is specifically designed to aid scientists in assessing the reliability and robustness of electronic systems employing low-k dielectric materials such as nano-porous films. Similarly, the models presented here will help to improve current methodologies for estimating the failure of gigascale electronics at device operating conditions from accelerated lab test conditions. Numerous graphs, tables, and illustrations are included to facilitate understanding of the topics. Readers will be able to understand dielectric breakdown in thin films along with the main failure modes and characterization techniques. In addition, they will gain expertise on conventional as well as new field acceleration test models for predicting long term dielectric degradation.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
1;Contents;8
2;Chapter 1: Introduction;10
2.1;1.1 A Brief History of Dielectric Breakdown;10
2.2;1.2 Dielectrics and the Microprocessor Age;11
2.3;1.3 Copper, Low-kappa Dielectrics, and Current Challenges;14
2.4;References;16
3;Chapter 2: General Theories;19
3.1;2.1 Field Acceleration Models for Amorphous Thin Films;19
3.2;2.2 Emerging Models for Nano-porous Low-kappa Films;21
3.3;References;26
4;Chapter 3: Measurement Tools and Test Structures;28
4.1;3.1 Instruments and Data Acquisition;28
4.2;3.2 Metal-Insulator-Si Planar Capacitors;30
4.3;3.3 Interconnect Test Chips;32
4.4;3.4 P-cap Test Structures;33
4.5;References;33
5;Chapter 4: Experimental Techniques;34
5.1;4.1 Dielectric Breakdown Assessment;34
5.1.1;4.1.1 Constant Bias and Constant Current Stress Tests;34
5.1.2;4.1.2 Ramped Voltage and Ramped Current Stress Tests;35
5.1.3;4.1.3 Bipolar Applied Field Tests;36
5.2;4.2 Dielectric Characterization;38
5.2.1;4.2.1 Capacitance-Voltage Spectroscopy;38
5.2.2;4.2.2 Triangular Voltage Spectroscopy;40
5.3;4.3 Analysis of Interfacial and Bulk Dielectric Composition;41
5.4;References;43
6;Chapter 5: Breakdown Experiments;44
6.1;5.1 Intrinsic Dielectric Failure;44
6.2;5.2 Metal Ion-Catalyzed Dielectric Failure;46
6.2.1;5.2.1 Fundamentals of Ionic Transport;47
6.2.2;5.2.2 Constitutive Equation for Ions;48
6.2.3;5.2.3 Ionic Flux;48
6.2.4;5.2.4 Poisson´s Equation;49
6.2.5;5.2.5 Boundary Conditions;49
6.2.6;5.2.6 RVS and Bipolar Applied Field Experiments;49
6.3;5.3 Plasma Damage and Dielectric Integrity;59
6.4;References;63
7;Chapter 6: Kinetics of Charge Carrier Confinement in Thin Dielectrics;65
7.1;6.1 Detection of Charge Trapping in Interlayer Dielectrics;65
7.2;6.2 Leakage Current Relaxation and Trapping Kinetics;72
7.3;6.3 Constitutive Equation for Electrons;75
7.4;6.4 Trapped Electrons;75
7.5;6.5 Constitutive Equation for Ions;76
7.6;6.6 Poisson´s Equation;76
7.7;6.7 Boundary Conditions;77
7.8;References;80
8;Chapter 7: Theory of Dielectric Breakdown in Nano-Porous Thin Films;82
8.1;7.1 Charge Transport Fundamentals;82
8.2;7.2 Fundamentals for a Charge Transport Model for Dielectric Breakdown;83
8.2.1;7.2.1 Poisson´s Equation;84
8.2.2;7.2.2 Trap Generation;85
8.2.3;7.2.3 Constitutive Equation for Electrons;86
8.2.4;7.2.4 Boundary Conditions;87
8.2.5;7.2.5 Initial Conditions;88
8.3;7.3 The Hot Electron;88
8.4;7.4 Kinetics of Defect Formation and Ultimate Failure;90
8.5;7.5 Evidence for Carbon- and Porogen-Driven Failure;93
8.6;References;95
9;Chapter 8: Dielectric Breakdown in Copper Interconnects;97
9.1;8.1 Cu´s Impact on Dielectric Breakdown;97
9.2;8.2 Modeling Cu-Driven Dielectric Failure;100
9.3;References;102
10;Chapter 9: Reconsidering Conventional Field Acceleration Models;103
10.1;9.1 Charge Transport Model Predictions;103
10.2;9.2 New Perspectives;107
10.3;References;109




