E-Book, Englisch, Band 19, 364 Seiten
Bosma / Cannon Discovering Mathematics with Magma
1. Auflage 2007
ISBN: 978-3-540-37634-7
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Reducing the Abstract to the Concrete
E-Book, Englisch, Band 19, 364 Seiten
Reihe: Algorithms and Computation in Mathematics
ISBN: 978-3-540-37634-7
Verlag: Springer Berlin Heidelberg
Format: PDF
Kopierschutz: 1 - PDF Watermark
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Magma: The project;8
3;Discovering mathematics: About this volume;14
4;How to read the Magma code;20
5;Contents;24
6;Some computational experiments in number theory;26
6.1;1 Introduction;26
6.2;2 Covering systems;27
6.3;3 Covering systems and explicit primality tests;32
6.4;4 The totient function;40
6.5;5 Class number relations;46
6.6;References;53
7;Applications of the class field theory of global fields;56
7.1;1 Introduction;56
7.2;2 Number fields;57
7.3;3 Global function fields;70
7.4;4 Applications;77
7.5;References;86
8;Some ternary Diophantine equations of signature (n, n, 2);88
8.1;1 Introduction;88
8.2;2 Proof of Proposition 1.3;90
8.3;3 Construction of parametrising curves;91
8.4;4 The equation x5 + y5 = Dz2;93
8.5;5 Deciding local solvability;97
8.6;6 Mordell–Weil groups of elliptic curves;104
8.7;7 Chabauty methods using elliptic curves;109
8.8;8 The equations xn + yn = Dz2 for n = 6, 7, 9, 11, 13, 17;113
8.9;References;115
9;Studying the Birch and Swinnerton-Dyer conjecture for modular abelian varieties using Magma;118
9.1;1 Introduction;118
9.2;2 Modular abelian varieties;119
9.3;3 The Birch and Swinnerton-Dyer Conjecture;122
9.4;4 Some computational results;125
9.5;5 Modular symbols;126
9.6;6 Visibility theory;129
9.7;7 Computing special values of modular L-function;130
9.8;8 Computing Tamagawa numbers;131
9.9;9 Computing the torsion subgroup;132
9.10;10 A divisor and multiple of the order of the Shafarevich – Tate group;132
9.11;11 An element of the Shafarevich–Tate group that becomes visible at higher level;133
9.12;12 Complete Magma log;136
9.13;References;139
10;Computing with the analytic Jacobian of a genus 2 curve;142
10.1;1 Introduction;142
10.2;2 Finding genus 2 CM curves defined over the rationals;145
10.3;3 Isogenies;152
10.4;References;159
11;Graded rings and special K3 surfaces;162
11.1;1 Introduction;162
11.2;2 Elementary example;165
11.3;3 Graded rings of polarised varieties;168
11.4;4 Subcanonical curves;169
11.5;5 K3 database;171
11.6;6 Simple degenerations of the famous 95;173
11.7;7 Unprojection;178
11.8;8 Special K3 surfaces in Fletcher’s 84;180
11.9;References;183
12;Constructing the split octonions;186
12.1;1 Introduction;186
12.2;2 Structure constant algebras;188
12.3;3 Lie algebras of type D4 and E6;191
12.4;4 Triality;194
12.5;5 The Lie algebra of type G2;196
12.6;6 The split octonions;198
12.7;7 The quadratic form;202
12.8;8 The Chevalley groups of type G2;205
12.9;References;210
13;Support varieties for modules;212
13.1;1 Introduction;212
13.2;2 Notes on projectivity;214
13.3;3 Support varieties and rank varieties;215
13.4;4 Finding points on the variety;217
13.5;5 Computing the variety from a set of points;224
13.6;6 Varieties of truncated syzygy modules;226
13.7;References;228
14;When is projectivity detected on subalgebras?;230
14.1;1 Introduction;230
14.2;2 Criterion for projectivity;231
14.3;3 Basic algebras and homological algebra on the computer;233
14.4;4 Support varieties for modules over group algebras;234
14.5;5 Some notes on cohomology and computations;236
14.6;6 An algebra whose projective modules are detected on proper subalgebras;238
14.7;7 An example in which projectivity is not detected on subalgebras;241
14.8;References;244
15;Cohomology and group extensions in Magma;246
15.1;1 Introduction;246
15.2;2 Computing cohomology groups;247
15.3;3 Finding group extensions;261
15.4;References;266
16;Computing the primitive permutation groups of degree less than 1000;268
16.1;1 Some background;268
16.2;2 Mathematical preliminaries;269
16.3;3 Determining conjugacy;271
16.4;4 Maximal irreducible subgroups of GL(4, 5);280
16.5;5 The main algorithm;282
16.6;6 Results;283
16.7;References;284
17;Computer aided discovery of a fast algorithm for testing conjugacy in braid groups;286
17.1;1 Introduction;286
17.2;2 Background: braid groups and testing conjugacy;287
17.3;3 Coming across another class invariant;293
17.4;4 On the way to a proof;299
17.5;5 Computing minimal simple elements;306
17.6;6 An application: key recovery;307
17.7;References;310
18;Searching for linear codes with large minimum distance;312
18.1;1 Introduction;312
18.2;2 Computing the minimum weight;314
18.3;3 Constructing new codes from old ones;326
18.4;4 Searching for good codes;328
18.5;5 Conclusion;337
18.6;6 Acknowledgements;337
18.7;References;338
19;Colouring planar graphs;340
19.1;1 Introduction;340
19.2;2 k-Flows in graphs;341
19.3;3 Planar graphs;342
19.4;4 k-Flows and k-colouring in planar graphs;347
19.5;5 Finding nowhere-zero k-Flows;348
19.6;6 Testing for nowhere-zero k-Flows;350
19.7;7 Conclusion;354
19.8;References;354
20;Appendix: The Magma language;356
20.1;Introduction;356
20.2;1 Basics;356
20.3;2 Sets and sequences;364
20.4;3 Tuples;372
20.5;4 Creating functions and procedures;373
20.6;5 Loops: for, while, and repeat;374
20.7;6 Maps;377
20.8;References;381
21;Index;382




