Bosq | Mathematical Statistics and Stochastic Processes | Buch | 978-1-84821-361-6 | www.sack.de

Buch, Englisch, 304 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 544 g

Bosq

Mathematical Statistics and Stochastic Processes


1. Auflage 2012
ISBN: 978-1-84821-361-6
Verlag: Wiley

Buch, Englisch, 304 Seiten, Format (B × H): 152 mm x 234 mm, Gewicht: 544 g

ISBN: 978-1-84821-361-6
Verlag: Wiley


Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today’s practitioners.
Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and robustness, second-order processes in discrete and continuous time and diffusion processes, statistics for discrete and continuous time processes, statistical prediction, and complements in probability.
This book is aimed at students studying courses on probability with an emphasis on measure theory and for all practitioners who apply and use statistics and probability on a daily basis.

Bosq Mathematical Statistics and Stochastic Processes jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


Preface xiii

PART 1. MATHEMATICAL STATISTICS 1

Chapter 1. Introduction to Mathematical Statistics 3

1.1. Generalities 3

1.2. Examples of statistics problems 4

Chapter 2. Principles of Decision Theory 9

2.1. Generalities 9

2.2. The problem of choosing a decision function 11

2.3. Principles of Bayesian statistics 13

2.4. Complete classes 17

2.5. Criticism of decision theory – the asymptotic point of view 18

2.6. Exercises 18

Chapter 3. Conditional Expectation 21

3.1. Definition 21

3.2. Properties and extension 22

3.3. Conditional probabilities and conditional distributions 24

3.4. Exercises 26

Chapter 4. Statistics and Sufficiency 29

4.1. Samples and empirical distributions 29

4.2. Sufficiency 31

4.3. Examples of sufficient statistics – an exponential model 33

4.4. Use of a sufficient statistic 35

4.5. Exercises 36

Chapter 5. Point Estimation 39

5.1. Generalities 39

5.2. Sufficiency and completeness 42

5.3. The maximum-likelihood method 45

5.4. Optimal unbiased estimators 49

5.5. Efficiency of an estimator 56

5.6. The linear regression model 65

5.7. Exercises 68

Chapter 6. Hypothesis Testing and Confidence Regions 73

6.1. Generalities 73

6.2. The Neyman–Pearson (NP) lemma 75

6.3. Multiple hypothesis tests (general methods) 80

6.4. Case where the ratio of the likelihoods is monotonic 84

6.5. Tests relating to the normal distribution 86

6.6. Application to estimation: confidence regions 86

6.7. Exercises 90

Chapter 7. Asymptotic Statistics 101

7.1. Generalities 101

7.2. Consistency of the maximum likelihood estimator 103

7.3. The limiting distribution of the maximum likelihood estimator 104

7.4. The likelihood ratio test 106

7.5. Exercises 108

Chapter 8. Non-Parametric Methods and Robustness 113

8.1. Generalities 113

8.2. Non-parametric estimation 114

8.3. Non-parametric tests 117

8.4. Robustness 121

8.5. Exercises 124

PART 2. STATISTICS FOR STOCHASTIC PROCESSES 131

Chapter 9. Introduction to Statistics for Stochastic Processes 133

9.1. Modeling a family of observations 133

9.2. Processes 134

9.3. Statistics for stochastic processes 137

9.4. Exercises 138

Chapter 10. Weakly Stationary Discrete-Time Processes 141

10.1. Autocovariance and spectral density 141

10.2. Linear prediction and Wold decomposition 144

10.3. Linear processes and the ARMA model 146

10.4. Estimating the mean of a weakly stationary process 149

10.5. Estimating the autocovariance 151

10.6. Estimating the spectral density 151

10.7. Exercises 155

Chapter 11. Poisson Processes – A Probabilistic and Statistical Study 163

11.1. Introduction 163

11.2. The axioms of Poisson processes 164

11.3. Interarrival time 166

11.4. Properties of the Poisson process 168

11.5. Notions on generalized Poisson processes 170

11.6. Statistics of Poisson processes 172

11.7. Exercises 177

Chapter 12. Square-Integrable Continuous-Time Processes 183

12.1. Definitions 183

12.2. Mean-square continuity 183

12.3. Mean-square integration 184

12.4. Mean-square differentiation 187

12.5. The Karhunen–Loeve theorem 188

12.6. Wiener processes 189

12.7. Notions on weakly stationary continuous-time processes 195

12.8. Exercises 197

Chapter 13. Stochastic Integration and Diffusion Processes 203

13.1. Itô integral 203

13.2. Diffusion processes 206

13.3. Processes defined by stochastic differential equations and stochastic integrals 212

13.4. Notions on statistics for diffusion processes 215

13.


Denis Bosq is Professor emeritus Université Pierre et Marie Curie (Paris 6) France.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.