Brecher / Özdemir | Integrative Production Technology | E-Book | www.sack.de
E-Book

E-Book, Englisch, 1128 Seiten

Brecher / Özdemir Integrative Production Technology

Theory and Applications
1. Auflage 2017
ISBN: 978-3-319-47452-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark

Theory and Applications

E-Book, Englisch, 1128 Seiten

ISBN: 978-3-319-47452-6
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark



This contributed volume contains the research results of the Cluster of Excellence 'Integrative Production Technology for High-Wage Countries', funded by the German Research Society (DFG). The approach to the topic is genuinely interdisciplinary, covering insights from fields such as engineering, material sciences, economics and social sciences. The book contains coherent deterministic models for integrative product creation chains as well as harmonized cybernetic models of production systems. The content is structured into five sections: Integrative Production Technology, Individualized Production, Virtual Production Systems, Integrated Technologies, Self-Optimizing Production Systems and Collaboration Productivity.The target audience primarily comprises research experts and practitioners in the field of production engineering, but the book may also be beneficial for graduate students. 

Brecher / Özdemir Integrative Production Technology jetzt bestellen!

Weitere Infos & Material


1;Foreword;5
2;Preface;7
3;Contents;9
4;Contributors;21
5;Overview;32
6;1 Integrative Production Technology—Theory and Applications;39
6.1;1.1 Global Economic Background;39
6.2;1.2 Opportunities and Challenges for Manufacturing Companies in High-Wage Countries;46
6.3;1.3 The Polylemma of Production;50
6.4;1.4 Research Program;51
6.5;1.5 Theory of Production;53
6.6;References;54
7;Individualized Production;56
8;2 Direct, Mold-Less Production Systems;60
8.1;2.1 Summary;61
8.2;2.2 Motivation and Research Question;63
8.2.1;2.2.1 Objectives and Measures for the Second Funding Period;64
8.3;2.3 State of the Art;67
8.3.1;2.3.1 Value Creation with Customized Products for the Case of Additive Manufacturing (AM);67
8.3.1.1;2.3.1.1 Value and Customer Benefits of Customized Products: The Mass Customization Approach;68
8.3.2;2.3.2 Complementation of Manufacturing with SLM Technologies;71
8.3.2.1;2.3.2.1 The Product Production System (PPS);72
8.3.2.2;2.3.2.2 Influences on the Product Production System (PPS) from Integrating SLM Technologies into Manufacturing;73
8.3.3;2.3.3 Machine-Specific Cost Drivers in Additive Manufacturing (AM) Technologies like Selective Laser Melting (SLM);75
8.3.3.1;2.3.3.1 Current SLM Machines;75
8.3.3.2;2.3.3.2 Current Cost Models;77
8.3.4;2.3.4 High-Power Selective Laser Melting (HP SLM);79
8.3.5;2.3.5 Qualification of Lattice Structures Manufactured by Selective Laser Melting (SLM) for Custom Part Properties;80
8.3.6;2.3.6 Steels in the Selective Laser Melting (SLM) Process;83
8.3.6.1;2.3.6.1 Results of the First Phase;83
8.3.6.2;2.3.6.2 Mechanical Properties of Steels Processed by Selective Laser Melting (SLM);84
8.4;2.4 Results;85
8.4.1;2.4.1 Value Creation with Customized Products for the Case of Additive Manufacturing (AM);85
8.4.1.1;2.4.1.1 Value Dimensions of Customized Products;85
8.4.1.2;2.4.1.2 Involvement and Perceived Product Value;86
8.4.1.3;2.4.1.3 Cognitive Costs of Product Customization;87
8.4.1.4;2.4.1.4 The Value of Higher Co-Design Freedom;88
8.4.1.5;2.4.1.5 Product Customization and Perceived Product Value;89
8.4.1.6;2.4.1.6 Implications of AM on the Manufacturing Firm and the Market;91
8.4.2;2.4.2 The SLM-Complemented Product Production System (PPS);92
8.4.2.1;2.4.2.1 Conflict Field “Product Program”;92
8.4.2.2;2.4.2.2 Conflict Field “Product Architecture”;93
8.4.2.3;2.4.2.3 Conflict Field “Production Structure”;95
8.4.2.4;2.4.2.4 Conflict Field “Supply Chain”;95
8.4.3;2.4.3 Machine-Specific Cost Drivers in Additive Manufacturing (AM) Technologies like Selective Laser Melting (SLM);97
8.4.3.1;2.4.3.1 Approach;97
8.4.3.2;2.4.3.2 Results;99
8.4.3.3;2.4.3.3 Machine Structure Model;99
8.4.3.4;2.4.3.4 SLM Reference Process;99
8.4.3.5;2.4.3.5 Cost Model;100
8.4.3.6;2.4.3.6 Unit Costs of SLM-Manufactured Parts;104
8.4.3.7;2.4.3.7 Evaluation of Cost Drivers;110
8.4.3.8;2.4.3.8 Workpiece Dimension;110
8.4.3.9;2.4.3.9 SLM Machine Build Envelope;111
8.4.3.10;2.4.3.10 Laser Beam Sources and Scanner Systems;112
8.4.3.11;2.4.3.11 Machine Development;114
8.4.4;2.4.4 High-Power Selective Laser Melting (HP SLM);116
8.4.5;2.4.5 Qualification of Lattice Structures Manufactured by Selective Laser Melting (SLM) for Custom Part Properties;123
8.4.6;2.4.6 High-Manganese Steel Fe-22Mn-0.3C in the Selective Laser Melting (SLM) Process;132
8.5;2.5 Profitability Assessment as a Contribution to the Theory of Production;136
8.5.1;2.5.1 Time-to-Market;137
8.5.2;2.5.2 Tooling Costs;138
8.6;2.6 Industrial Relevance;140
8.7;2.7 Future Research Topics;141
8.8;References;144
9;3 Mold-Based Production Systems;149
9.1;3.1 Summary;150
9.2;3.2 Motivation and Research Question;153
9.3;3.3 State of the Art;156
9.3.1;3.3.1 Methodology for Product and Tool Design;156
9.3.2;3.3.2 Numerical Optimization;159
9.3.3;3.3.3 Application Case Plastics Profile Extrusion;160
9.3.4;3.3.4 Application Case High-Pressure Die Casting;163
9.4;3.4 Results;165
9.4.1;3.4.1 Methodology for Product and Tool Design;165
9.4.1.1;3.4.1.1 Identification of Critical Product Specifications;166
9.4.1.2;3.4.1.2 Identification of the Degrees of Freedom for Optimizing the Tool Suitability Within the Product;170
9.4.1.3;3.4.1.3 Systematic Limitation of the Identified Degrees of Freedom;172
9.4.2;3.4.2 Numerical Optimization;174
9.4.2.1;3.4.2.1 Optimizer;175
9.4.2.2;3.4.2.2 Flow Solver;176
9.4.2.3;3.4.2.3 Geometry and Process Kernel;178
9.4.3;3.4.3 Application Case Plastics Profile Extrusion;180
9.4.4;3.4.4 Application Case High-Pressure Die Casting;188
9.4.4.1;3.4.4.1 Numerical Optimization for High-Pressure Die Casting Dies;190
9.4.4.2;3.4.4.2 Experimental Die and Measurement Concept;195
9.5;3.5 Profitability Assessment as a Contribution to the Theory of Production;199
9.6;3.6 Industrial Relevance;202
9.7;3.7 Future Research Topics;203
9.8;References;206
10;Virtual Production Systems;211
11;4 Virtual Production Intelligence (VPI);213
11.1;4.1 Summary;214
11.2;4.2 Motivation and Research Question;216
11.2.1;4.2.1 Virtual Production Intelligence (VPI);216
11.2.2;4.2.2 Research Questions and Solution Hypothesis;217
11.3;4.3 State of the Art;219
11.3.1;4.3.1 Information Management;220
11.3.1.1;4.3.1.1 Information Systems;220
11.3.1.2;4.3.1.2 Information Modeling;220
11.3.2;4.3.2 Design Domain Factory;221
11.3.2.1;4.3.2.1 Factory Planning;221
11.3.2.2;4.3.2.2 Information Management in Factory Planning;223
11.3.2.3;4.3.2.3 Factory Layout Planning Using Virtual Reality;224
11.3.3;4.3.3 Design Domain Machine;226
11.3.3.1;4.3.3.1 Modeling of Laser Applications in Manufacturing;226
11.3.3.2;4.3.3.2 Visualization of Multi-dimensional Data;229
11.4;4.4 Results;231
11.4.1;4.4.1 Design Domain Factory;232
11.4.1.1;4.4.1.1 Sources of Information;232
11.4.1.2;4.4.1.2 Resources of Information;234
11.4.1.3;4.4.1.3 Information Product;236
11.4.2;4.4.2 Design Domain Machine;245
11.4.2.1;4.4.2.1 Sources of Information;245
11.4.2.2;4.4.2.2 Resources of Information;254
11.4.2.3;4.4.2.3 Information Product;256
11.5;4.5 Profitability Assessment as a Contribution to the Theory of Production;268
11.5.1;4.5.1 Reduction of Time-to-Market;269
11.5.2;4.5.2 Increase of Quality;272
11.5.3;4.5.3 Effects on Development and Investment Costs;272
11.5.4;4.5.4 Conclusions on Profitability;273
11.6;4.6 Industrial Relevance;274
11.6.1;4.6.1 Virtual Production Intelligence (VPI) in Factory Planning;274
11.6.2;4.6.2 Metamodeling of Laser Cutting Processes;275
11.7;4.7 Future Research Topics;277
11.7.1;4.7.1 Design Domain Factory;277
11.7.2;4.7.2 Design Domain Machine;279
11.7.3;4.7.3 Integrative Scenario;281
11.8;References;282
12;5 Integrated Computational Materials and Production Engineering (ICMPE);288
12.1;5.1 Summary;289
12.2;5.2 Motivation and Research Question;290
12.2.1;5.2.1 Topics and Contribution to the Overall Objectives;290
12.2.2;5.2.2 Vision and Research Question;291
12.2.3;5.2.3 Research Questions for the Contributing Scientists;291
12.3;5.3 Demonstrator Components and Process Chain;292
12.3.1;5.3.1 Demonstrator 1: Steel Gear;292
12.3.2;5.3.2 Demonstrator 2: Plastic Component;292
12.4;5.4 State of the Art;293
12.4.1;5.4.1 Design of a Low-Cost Substitution Steel for Large Gears;293
12.4.2;5.4.2 Continuous Casting of Microalloyed Gear Steels;296
12.4.3;5.4.3 Hot Rolling Multipass Simulation;297
12.4.4;5.4.4 Material Modeling for the Simulation of Hot Forming Processes;298
12.4.5;5.4.5 Warm Forging Process and Its Implications;300
12.4.6;5.4.6 Machining Simulation with Focus on the Material Properties;302
12.4.7;5.4.7 Carburizing Simulation;304
12.4.8;5.4.8 Lifetime Simulation of Steel Gears;306
12.4.9;5.4.9 Multiscale Simulation of Injection Molded Semicrystalline Components;307
12.4.10;5.4.10 Production Planning with ICMPE Framework;309
12.5;5.5 Results;310
12.5.1;5.5.1 Design of a Low-Cost Substitution Steel for Large Gears;310
12.5.1.1;5.5.1.1 Methodology;310
12.5.1.2;5.5.1.2 Methods for Hardenability Calculation;311
12.5.1.3;5.5.1.3 Property Characterization;313
12.5.1.4;5.5.1.4 Conclusion;314
12.5.2;5.5.2 Continuous Casting of Microalloyed Gear Steels;315
12.5.2.1;5.5.2.1 Microscale—MICRESS;315
12.5.2.2;5.5.2.2 Macroscale—Abaqus;319
12.5.3;5.5.3 Hot Rolling Multipass Simulation;321
12.5.3.1;5.5.3.1 Mathematical Modeling from the Single-Pass Level to the Multipass Description;322
12.5.3.2;5.5.3.2 Numerical Results;326
12.5.3.3;5.5.3.3 Conclusions and Outlook;327
12.5.4;5.5.4 Material Modeling for the Simulation of Hot Forming Processes;328
12.5.4.1;5.5.4.1 Procedure;328
12.5.4.2;5.5.4.2 Material Model and Parameter Determination;329
12.5.4.3;5.5.4.3 Open Die Forging;331
12.5.4.4;5.5.4.4 Modeling and Validation of Closed Die Forging;333
12.5.4.5;5.5.4.5 Conclusions;336
12.5.5;5.5.5 Warm Forging Process and Its Implications;337
12.5.5.1;5.5.5.1 Computational Simulation of Temperature, Strain Rate, and Nb Element Effects in Conditioning of Austenite;337
12.5.6;5.5.6 Machining Simulation with Focus on the Material Properties;341
12.5.6.1;5.5.6.1 General Description;341
12.5.6.2;5.5.6.2 Orthogonal Cutting Process;343
12.5.6.3;5.5.6.3 Modeling and Validation;349
12.5.6.4;5.5.6.4 Conclusions;350
12.5.7;5.5.7 Carburizing Simulation;350
12.5.7.1;5.5.7.1 Introduction;350
12.5.7.2;5.5.7.2 Case Hardening Process;351
12.5.7.3;5.5.7.3 Characterization Procedure;354
12.5.7.4;5.5.7.4 Carburization Simulation;355
12.5.7.5;5.5.7.5 Case Hardening Simulation (Macroscale);356
12.5.7.6;5.5.7.6 Conclusion;357
12.5.8;5.5.8 Lifetime Simulation;358
12.5.8.1;5.5.8.1 Objective;358
12.5.8.2;5.5.8.2 Method to Consider Defect Size in the Tooth Root Load-Carrying Capacity Calculation;358
12.5.8.3;5.5.8.3 Validation;361
12.5.8.4;5.5.8.4 Summary and Outlook;363
12.5.9;5.5.9 Multiscale Simulation of Injection Molded Semicrystalline Components;363
12.5.9.1;5.5.9.1 Simulation of the Injection Molding Process;363
12.5.9.2;5.5.9.2 Prediction of the Microstructure;366
12.5.9.3;5.5.9.3 Calculation of the Effective Properties by a Two-Level Homogenization Approach;372
12.5.9.4;5.5.9.4 Application of the Homogenization Scheme;381
12.5.9.5;5.5.9.5 Effective Material’ Properties and Their Impact on the Global Component’s Behavior;383
12.5.10;5.5.10 Profitability Assessment as a Contribution to the Theory of Production;387
12.5.10.1;5.5.10.1 Reduction in Time to Market;388
12.5.10.2;5.5.10.2 Reduction in Development Costs;389
12.5.11;5.5.11 Industrial Relevance;390
12.5.11.1;5.5.11.1 Design of a Low-Cost Substitution Steel for Large Gears;390
12.5.11.2;5.5.11.2 Continuous Casting of Microalloyed Gear Steels;390
12.5.11.3;5.5.11.3 Material Modeling for the Simulation of Hot Forming Processes;391
12.5.11.4;5.5.11.4 Warm Forging Process and Its Implications;391
12.5.11.5;5.5.11.5 Machining Simulation with Focus on the Material Properties;391
12.5.11.6;5.5.11.6 Carburizing Simulation;392
12.5.11.7;5.5.11.7 Lifetime Simulation;392
12.5.11.8;5.5.11.8 Multiscale Simulation of Injection Molded Semicrystalline Components;393
12.5.11.9;5.5.11.9 Kinetic Modeling of Multipass Hot Rolling Processes;393
12.5.12;5.5.12 Future Research and Development Topics;394
12.6;References;394
13;Integrated Technologies;400
14;6 Multi-technology Platforms (MTPs);404
14.1;6.1 Summary;406
14.2;6.2 Motivation and Research Question;407
14.3;6.3 Design Methodology for Multi-technology Platforms;408
14.3.1;6.3.1 Introduction;408
14.3.2;6.3.2 State of the Art;410
14.3.2.1;6.3.2.1 Relevant Approaches in Production Technology;410
14.3.2.2;6.3.2.2 Approaches in Engineering Design;411
14.3.3;6.3.3 Results;412
14.3.3.1;6.3.3.1 Adaptive Template Concept for Multi-technology Platforms;412
14.3.3.2;6.3.3.2 Dilemma of Morphological Analysis;415
14.3.4;6.3.4 Industrial Relevance;419
14.3.5;6.3.5 Conclusions and Outlook;419
14.4;6.4 Measurement on Machine Tools and MTPs;420
14.4.1;6.4.1 Introduction;420
14.4.2;6.4.2 State of the Art;420
14.4.3;6.4.3 Results;422
14.4.3.1;6.4.3.1 Uncertainty Budget for On-Machine Measurement (OMM);423
14.4.3.2;6.4.3.2 Examination of Thermal Effects on the Measurement Process;423
14.4.3.3;6.4.3.3 Concept for an Interim Check for a Fast Calibration of the MTP;428
14.4.4;6.4.4 Industrial Relevance;433
14.4.5;6.4.5 Conclusion and Outlook;434
14.5;6.5 Demonstrator Multi-technology Machining Center (MTMC);434
14.5.1;6.5.1 Introduction;435
14.5.2;6.5.2 State of the Art;437
14.5.3;6.5.3 Results;439
14.5.3.1;6.5.3.1 Accuracy Behavior of MTP;439
14.5.3.2;6.5.3.2 Simultaneous Machining;448
14.5.4;6.5.4 Industrial Relevance;453
14.5.5;6.5.5 Conclusion and Outlook;454
14.6;6.6 Demonstrator Hybrid Sheet Metal Processing Center;454
14.6.1;6.6.1 Introduction;454
14.6.2;6.6.2 State of the Art;455
14.6.2.1;6.6.2.1 Previous Results;455
14.6.2.2;6.6.2.2 Current Research Topics;459
14.6.3;6.6.3 Results;462
14.6.3.1;6.6.3.1 Process Integration of Postprocesses;463
14.6.3.2;6.6.3.2 New Process: Formfit Incremental Joining;463
14.6.3.3;6.6.3.3 Overview of the Hybrid Sheet Metal Processing Center;465
14.6.3.4;6.6.3.4 Application: Multilayered Free-form Panels;465
14.6.3.5;6.6.3.5 Process Optimization: Speedup of Incremental Hole Flanging;467
14.6.3.6;6.6.3.6 Process Optimization: Stretch Forming and ISF;470
14.6.3.7;6.6.3.7 Process Optimization: Laser-Assisted ISF;471
14.6.4;6.6.4 Industrial Relevance;474
14.6.5;6.6.5 Conclusion and Outlook;476
14.7;6.7 Demonstrator Conductive Friction Stir Welding (FSW) Center;477
14.7.1;6.7.1 Introduction;477
14.7.2;6.7.2 State of the Art;477
14.7.2.1;6.7.2.1 Friction Stir Welding (FSW);477
14.7.2.2;6.7.2.2 Simulation of Friction Stir Welding (FSW) Process;479
14.7.3;6.7.3 Results;486
14.7.3.1;6.7.3.1 Friction Stir Welding (FSW) of Multi-Material Blanks Made from Aluminum and Steel;487
14.7.3.2;6.7.3.2 Conductive Friction Stir Welding (FSW);493
14.7.3.3;6.7.3.3 Simulation of the Friction Stir Welding (FSW) Process;495
14.7.4;6.7.4 Industrial Relevance;500
14.7.5;6.7.5 Conclusion and Outlook;501
14.8;6.8 Demonstrator LaserTurn;501
14.8.1;6.8.1 Introduction;501
14.8.2;6.8.2 State of the Art;502
14.8.3;6.8.3 Results;504
14.8.3.1;6.8.3.1 Shortening of the Process Chain;504
14.8.3.2;6.8.3.2 Development of New Laser Processes;507
14.8.4;6.8.4 Industrial Relevance;515
14.8.5;6.8.5 Conclusion and Outlook;515
14.9;6.9 Economic Efficiency of Manufacturing Technology Integration;515
14.9.1;6.9.1 Introduction;515
14.9.2;6.9.2 State of the ArtState-of-the-Art’ has been changed to ‘State of the Art’ throughout the chapter. Please check.;516
14.9.2.1;6.10 Profitability Assessment as a Contribution to the Theory of Production;530
14.9.2.1.1;6.10.1 Multi-technology Machining Center;530
14.9.2.1.1.1;6.10.1.1 Reduction of Main Process Time;530
14.9.2.1.1.2;6.10.1.2 Reduction of Time-to-Market;531
14.9.2.1.2;6.10.2 Hybrid Sheet Metal Processing Center;532
14.9.2.1.2.1;6.10.2.1 Reduction of Time-to-Market;533
14.9.2.1.2.2;6.10.2.2 Increase of Main Process Time;533
14.9.2.1.3;6.10.3 Conductive Friction Stir Welding (FSW);534
14.9.2.1.3.1;6.10.3.1 Reduction of Main Process Time;535
14.9.2.1.3.2;6.10.3.2 Reduction of Main Time per Batch;536
14.9.2.1.4;6.10.4 LaserTurn;537
14.9.2.1.4.1;6.10.4.1 Reduction of Production Time per Batch;537
14.9.2.1.4.2;6.10.4.2 Reduction of Auxiliary Process Time;538
14.9.2.2;6.11 Conclusion and Future Research Topics;539
14.9.2.3;References;540
15;7 Multi-technology Products;549
15.1;7.1 Summary;550
15.2;7.2 Motivation and Research Question;552
15.3;7.3 Plastics–Metal Hybrid Parts for Electrical Applications;553
15.3.1;7.3.1 Introduction;553
15.3.2;7.3.2 State of the Art;554
15.3.2.1;7.3.2.1 Technologies for the Production of Plastics/Metal Hybrid Parts;554
15.3.2.2;7.3.2.2 The In-Mold Metal Spraying (IMMS) Process;555
15.3.2.3;7.3.2.3 Adhesion of Plastics and Metal Within the IMMS Process;556
15.3.3;7.3.3 Results;557
15.3.3.1;7.3.3.1 Feasibility Study with Different Thermal Spraying Methods;557
15.3.3.2;7.3.3.2 Feasibility Study with Cold Gas Spraying;558
15.3.3.3;7.3.3.3 Feasibility Study with Wire Arc Spraying;565
15.3.3.4;7.3.3.4 Influence of the Plastic Component on the Transfer of an Arc Sprayed Zinc Coating;569
15.3.3.5;7.3.3.5 Transferability of Partial Sprayed Layers on Flat Plastic Components;571
15.3.3.6;7.3.3.6 Transferability on Plastic Components with Complex Geometrically Structured Surfaces;572
15.3.4;7.3.4 Profitability Assessment as a Contribution to the Theory of Production;574
15.3.4.1;7.3.4.1 Increase of Product Variants;575
15.3.4.2;7.3.4.2 Reduction in Main Process Time;576
15.3.5;7.3.5 Industrial Relevance;576
15.3.6;7.3.6 Conclusion and Outlook;578
15.4;7.4 Manufacture of Plastic Components with Optical Microstructures;578
15.4.1;7.4.1 Introduction;578
15.4.2;7.4.2 State of the Art;579
15.4.3;7.4.3 Results;585
15.4.3.1;7.4.3.1 Optics Design for Polymer Optics;585
15.4.3.2;7.4.3.2 Microstructuring with USP Lasers;592
15.4.3.3;7.4.3.3 Nanostructuring with MBI;596
15.4.3.4;7.4.3.4 Synthesis and Analysis of Hard Coatings Produced by Means of PVD;601
15.4.3.5;7.4.3.5 Development of the Laser-Based Temperature Control into a Mold-External Process;611
15.4.3.6;7.4.3.6 Development of a Variothermal Extrusion Embossing Process for the Replication of Microstructures on Polycarbonate and Polymethylmethacrylate Films;614
15.4.4;7.4.4 Profitability Assessment as a Contribution to the Theory of Production;618
15.4.5;7.4.5 Industrial Relevance;621
15.4.6;7.4.6 Conclusion and Outlook;622
15.5;7.5 Plastic–Metal Hybrids for Structural Applications;623
15.5.1;7.5.1 Introduction;623
15.5.2;7.5.2 State of the Art;623
15.5.2.1;7.5.2.1 Comparison of Material Properties—Aluminum Versus Polyamide 6;623
15.5.2.2;7.5.2.2 Joining Methods for Thermoplastics and Metals;624
15.5.2.3;7.5.2.3 Post-Mold Assembly (PMA);625
15.5.2.4;7.5.2.4 In-Mold Assembly (IMA);625
15.5.3;7.5.3 Results;626
15.5.3.1;7.5.3.1 Thermal Direct Joining of Metal–Plastic Hybrid Structures;626
15.5.3.2;7.5.3.2 Crash Simulation of Metal–Plastics Hybrid Structures;633
15.5.3.3;7.5.3.3 Multi-material High-pressure Die Casting;641
15.5.4;7.5.4 Profitability Assessment as a Contribution to the Theory of Production;649
15.5.5;7.5.5 Industrial Relevance;650
15.5.6;7.5.6 Conclusion and Outlook;651
15.6;7.6 Future Research Topics;652
15.7;References;656
16;Self-optimizing Production Systems;662
16.1;Part4;674
17;8 Cognition-Enhanced, Self-optimizing Production Networks;677
17.1;8.1 Summary;678
17.2;8.2 Motivation and Research Question;681
17.2.1;8.2.1 Motivation;681
17.2.2;8.2.2 State of the Art;681
17.2.3;8.2.3 Concept of Self-optimizing Production Networks;683
17.2.4;8.2.4 Structure;684
17.3;8.3 Intercompany Material and Information Flow;686
17.3.1;8.3.1 Introduction;686
17.3.2;8.3.2 State of the Art;687
17.3.3;8.3.3 Results;689
17.3.4;8.3.4 Profitability Assessment as a Contribution to the Theory of Production;717
17.3.5;8.3.5 Industrial Relevance;718
17.3.6;8.3.6 Conclusion and Outlook;720
17.4;8.4 Self-optimizing Production Planning and Control;721
17.4.1;8.4.1 Introduction;721
17.4.2;8.4.2 State of the Art;721
17.4.3;8.4.3 Results;723
17.4.4;8.4.4 Profitability Assessment as a Contribution to the Theory of Production;730
17.4.5;8.4.5 Industrial Relevance;732
17.4.6;8.4.6 Conclusion and Outlook;733
17.5;8.5 Cognition-Enhanced Self-optimizing Production Lines;733
17.5.1;8.5.1 Introduction;733
17.5.2;8.5.2 State of the Art;735
17.5.3;8.5.3 Results;740
17.5.4;8.5.4 Profitability Assessment as a Contribution to the Theory of Production;763
17.5.5;8.5.5 Industrial Relevance;764
17.5.6;8.5.6 Conclusion and Outlook;765
17.6;8.6 Conclusion and Future Research Topics;767
17.7;References;768
18;9 Self-optimizing Production Technologies;776
18.1;9.1 Summary;777
18.2;9.2 Motivation and Research Question;779
18.3;9.3 Approaches to Self-optimize Technical Systems;781
18.3.1;9.3.1 State of the Art of Self-optimizing Production Technologies;781
18.3.1.1;9.3.1.1 Progress in Self-optimization of Technical Systems;781
18.3.1.2;9.3.1.2 Progress in Modeling of Complex Manufacturing Processes;786
18.3.2;9.3.2 Results;791
18.3.2.1;9.3.2.1 Self-optimization of Technical Systems;791
18.3.2.2;9.3.2.2 Modeling of Complex Manufacturing Processes;793
18.4;9.4 Manufacturing Processes;802
18.4.1;9.4.1 Model-Based Self-optimizing (MBSO) Manufacturing System for Laser Cutting;803
18.4.1.1;9.4.1.1 State of the Art of Laser Cutting;804
18.4.1.2;9.4.1.2 Approach for a MBSO System in Laser Cutting;806
18.4.1.3;9.4.1.3 Results of the MBSO System in Laser Cutting;812
18.4.2;9.4.2 Model-Based Self-optimizing (MBSO) in Gas Metal Arc Welding;815
18.4.2.1;9.4.2.1 State of the Art of Optimizing Gas Metal Arc Welding;816
18.4.2.2;9.4.2.2 Approach for a MBSO System in Gas Metal Arc Welding (GMAW);818
18.4.2.3;9.4.2.3 Results of the MBSO System in Gas Metal Arc Welding (GMAW);823
18.4.3;9.4.3 Self-optimized Process Control of the Gun Drilling Process;824
18.4.3.1;9.4.3.1 State of the Art of Optimizing Gun Drilling Processes;824
18.4.3.2;9.4.3.2 Approach for a MBSO System in Gun Drilling;825
18.4.3.3;9.4.3.3 Results of the MBSO System in Gun Drilling;832
18.4.4;9.4.4 Model-Based Predictive Force Control in Milling;832
18.4.4.1;9.4.4.1 State of the Art of Force Control in Milling;833
18.4.4.2;9.4.4.2 Approach of a MBSO System for Force Control;834
18.4.4.3;9.4.4.3 Results of the MBSO System for Force Control in Milling;835
18.4.5;9.4.5 Self-optimizing Injection Molding;845
18.4.5.1;9.4.5.1 State of the Art of Optimizing Injection Molding;846
18.4.5.2;9.4.5.2 Approach of a MBSO System in Injection Molding;847
18.4.5.3;9.4.5.3 Results of the MBSO System in Injection Molding;852
18.4.6;9.4.6 Self-optimized Braiding;854
18.4.6.1;9.4.6.1 State of the Art of Optimizing Braiding;855
18.4.6.2;9.4.6.2 Approach of a MBSO System in Braiding;857
18.4.6.3;9.4.6.3 Results of the MBSO System in Braiding;861
18.4.7;9.4.7 Self-optimized Weaving;862
18.4.7.1;9.4.7.1 State of the Art of Optimizing Weaving;863
18.4.7.2;9.4.7.2 Approach of a MBSO System in Weaving;865
18.4.7.3;9.4.7.3 Multi-objective Self-optimization (MOSO);870
18.4.7.4;9.4.7.4 Results of the MBSO System in Weaving;871
18.4.8;9.4.8 Self-optimizing Inspection System;872
18.4.8.1;9.4.8.1 State of the Art of Haptic Testing;874
18.4.8.2;9.4.8.2 Approach of a MBSO System in Testing;875
18.4.8.3;9.4.8.3 Results of the MBSO System in Testing;879
18.5;9.5 Profitability Assessment as a Contribution to the Theory of Production;880
18.5.1;9.5.1 Manufacturing Time;881
18.5.1.1;9.5.1.1 Saving Auxiliary Process Time by Improved Setup Processes Through Model-Based Self-optimization;882
18.5.1.2;9.5.1.2 Increase in Productivity by Reducing the Main Process Time Through Process Monitoring and Self-optimized Parameter Adaption;885
18.5.1.3;9.5.1.3 Reduction in Machine-Hour Rate by Condition-Based Maintenance and Tool Change;887
18.5.2;9.5.2 Quality;890
18.5.3;9.5.3 Industrial Relevance;891
18.5.4;9.5.4 Future Research Topics;894
18.5.4.1;9.5.4.1 Integration of Self-optimizing Manufacturing Systems into Superordinate Planning Levels;894
18.5.4.2;9.5.4.2 Selected Research Topics;897
18.6;References;899
19;10 Cognition-Enhanced, Self-optimizing Assembly Systems;907
19.1;10.1 Summary;908
19.2;10.2 Motivation and Research Question;909
19.2.1;10.2.1 Self-optimization in Industrial Assembly;911
19.2.2;10.2.2 Self-optimization in the Use Case of Airplane Structure Elements;913
19.2.3;10.2.3 Self-optimization in the Use Case of Optical Components;914
19.3;10.3 State of the Art;914
19.3.1;10.3.1 Assembly of Large Components in Aerospace Production;914
19.3.1.1;10.3.1.1 Airplane Structure;915
19.3.1.2;10.3.1.2 Handling Systems in the Aircraft Structure Assembly;916
19.3.1.3;10.3.1.3 Measurement Technology for Large Volumes;919
19.3.1.4;10.3.1.4 Challenges and Deficits of the State of the Art;920
19.3.2;10.3.2 Assembly Technologies for Optical Systems;920
19.3.3;10.3.3 Results from the First Project Phase;923
19.4;10.4 Results;927
19.4.1;10.4.1 Self-optimizing Assembly of Large-Scale Components;933
19.4.1.1;10.4.1.1 Handling System;935
19.4.1.2;10.4.1.2 Measurement System and Process Identification;949
19.4.1.3;10.4.1.3 Model-Based Process Control;959
19.4.1.4;10.4.1.4 Virtualization of Self-optimizing Assembly Processes;968
19.4.2;10.4.2 Self-optimizing Assembly of Optical Systems;973
19.4.2.1;10.4.2.1 Planning of Self-optimizing Optics Assembly Processes;974
19.4.2.2;10.4.2.2 Function-Oriented Assembly;984
19.4.2.3;10.4.2.3 Assembly-Compatible Multifunctional Integrated Laser Systems;993
19.5;10.5 Profitability Assessment as Contribution to the Theory of Production;1002
19.5.1;10.5.1 Environmental Assessment of Self-optimizing Assembly Systems;1004
19.5.2;10.5.2 Comprehensive Goal Systems for Decision-Making;1006
19.5.3;10.5.3 Exemplary Cost Assessment for the Demonstrators;1007
19.6;10.6 Industrial Relevance;1010
19.7;10.7 Future Research Topics;1012
19.8;References;1014
20;Cross-Sectional Processes;1021
21;11 Scientific Cooperation Engineering;1023
21.1;11.1 Summary;1024
21.2;11.2 Motivation and Research Question;1025
21.3;11.3 State of the Art and Results of Scientific Cooperation Engineering;1027
21.3.1;11.3.1 Continuous Formative Evaluation;1027
21.3.1.1;11.3.1.1 State of the Art;1028
21.3.1.2;11.3.1.2 Method;1028
21.3.1.3;11.3.1.3 Results and Discussion;1029
21.3.1.4;11.3.1.4 Outlook;1030
21.3.2;11.3.2 Critical Incidents of Interdisciplinary Research;1031
21.3.2.1;11.3.2.1 State of the Art;1031
21.3.2.2;11.3.2.2 Method;1032
21.3.2.3;11.3.2.3 Results;1032
21.3.2.4;11.3.2.4 Future Studies on CIs;1034
21.3.3;11.3.3 Intercultural Diversity Management—Age and Culture Effects in Cluster Research;1035
21.3.3.1;11.3.3.1 State of the Art;1035
21.3.3.2;11.3.3.2 Method;1036
21.3.3.3;11.3.3.3 Results;1037
21.3.4;11.3.4 Physical Networking and Tailor-Made Trainings as Means for Cluster Development;1041
21.3.4.1;11.3.4.1 State of the Art;1041
21.3.4.2;11.3.4.2 Method: Design of Colloquia of Employees;1042
21.3.4.3;11.3.4.3 Results: Developmental Stages and Evaluation;1043
21.3.4.4;11.3.4.4 Interdisciplinary Training and Next-Level Learning Concepts;1044
21.3.5;11.3.5 Interdisciplinary Innovation Management;1045
21.3.5.1;11.3.5.1 State of the Art;1045
21.3.5.2;11.3.5.2 Methods: Benefits and Barriers of Interdisciplinary Collaboration in the Cluster of Excellence;1046
21.3.5.3;11.3.5.3 Results from the Benefits and Barriers of Interdisciplinary Collaboration Study;1047
21.3.5.4;11.3.5.4 Discussion;1048
21.3.5.5;11.3.5.5 Mapping to the Scientific Cooperation Portal;1048
21.3.6;11.3.6 Scientific Cooperation Portal;1049
21.3.6.1;11.3.6.1 State of the Art;1050
21.3.6.2;11.3.6.2 Method;1050
21.3.6.3;11.3.6.3 Quantitative Usage Analysis;1051
21.3.6.4;11.3.6.4 Qualitative User Questionnaire;1052
21.3.6.5;11.3.6.5 Usage Barriers and Usability Findings;1053
21.3.6.6;11.3.6.6 Outlook: Intelligent Inquiry Tools and Information Linking;1054
21.3.7;11.3.7 Cluster Terminologies: Data Science in Cooperation Engineering;1054
21.3.7.1;11.3.7.1 State of the Art;1054
21.3.7.2;11.3.7.2 Method: Terminology Framework;1055
21.3.7.3;11.3.7.3 Terminology App Functionalities;1057
21.3.8;11.3.8 Visualization of Collaboration as a Means to Support Interdisciplinary Cooperation and Integration;1059
21.3.8.1;11.3.8.1 State of the Art;1059
21.3.8.2;11.3.8.2 Publication Visualization on the Scientific Cooperation Portal;1060
21.3.8.3;11.3.8.3 Evaluation of the Visualizations;1061
21.3.8.4;11.3.8.4 Interdisciplinary Publication Workshops;1062
21.3.9;11.3.9 Research Planning Using the FlowChart Tool;1063
21.3.9.1;11.3.9.1 State of the Art;1063
21.3.9.2;11.3.9.2 Method;1064
21.3.9.3;11.3.9.3 Requirement Analysis;1064
21.3.9.4;11.3.9.4 The FlowChart Tool;1066
21.3.9.5;11.3.9.5 Implementation;1067
21.3.9.6;11.3.9.6 Results;1067
21.3.9.7;11.3.9.7 Future Research and Development;1068
21.4;11.4 Industrial Relevance;1068
21.5;11.5 Future Research Topics;1071
21.6;References;1072
22;12 Towards a Technology-Oriented Theory of Production;1077
22.1;12.1 Summary;1077
22.2;12.2 Research Motivation;1078
22.3;12.3 State of the Art;1080
22.3.1;12.3.1 Production Theory Models;1080
22.3.2;12.3.2 Classification of the Technology-Oriented Theory of Production;1084
22.4;12.4 Results;1087
22.4.1;12.4.1 Operationalization of Technological Advances Within the CoE Towards Their Impact on Profitability;1089
22.4.2;12.4.2 Operationalization Towards the Impact on Sales;1089
22.4.3;12.4.3 Operationalization Towards the Impact on Fixed Costs;1095
22.4.4;12.4.4 Operationalization Towards the Impact on Variable Costs;1098
22.5;12.5 Conclusion;1104
22.6;References;1106
23;13 Technology Platforms;1110
23.1;13.1 Summary;1110
23.2;13.2 Motivation and Research Question;1111
23.3;13.3 State of the Art;1111
23.4;13.4 Results;1112
23.4.1;13.4.1 External and Internal Communication;1112
23.4.1.1;13.4.1.1 Technology Transfer Office PROTECA;1112
23.4.1.2;13.4.1.2 CoE Website;1113
23.4.1.3;13.4.1.3 Cooperation Portals;1113
23.4.2;13.4.2 Spin-Offs, Centers, and Further Research Projects;1114
23.4.2.1;13.4.2.1 High Resolution Production Management;1115
23.4.2.2;13.4.2.2 Integrative Light Weight Engineering;1115
23.4.2.3;13.4.2.3 Synchronized Tool and Die Production;1116
23.4.2.4;13.4.2.4 Photonics Production;1116
23.4.2.5;13.4.2.5 Sheet and Profile Prototyping;1116
23.4.2.6;13.4.2.6 Production Engineering for E-Mobility Components;1117
23.5;13.5 Conclusion and Outlook;1117
23.6;References;1118
24;Index;1119



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.