Bremaud | An Introduction to Probabilistic Modeling | Buch | 978-0-387-96460-7 | sack.de

Buch, Englisch, 208 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1100 g

Reihe: Undergraduate Texts in Mathematics

Bremaud

An Introduction to Probabilistic Modeling


1988
ISBN: 978-0-387-96460-7
Verlag: Springer

Buch, Englisch, 208 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1100 g

Reihe: Undergraduate Texts in Mathematics

ISBN: 978-0-387-96460-7
Verlag: Springer


Introduction to the basic concepts of probability theory: independence, expectation, convergence in law and almost-sure convergence. Short expositions of more advanced topics such as Markov Chains, Stochastic Processes, Bayesian Decision Theory and Information Theory.

Bremaud An Introduction to Probabilistic Modeling jetzt bestellen!

Zielgruppe


Professional/practitioner


Autoren/Hrsg.


Weitere Infos & Material


1 Basic Concepts and Elementary Models.- 1. The Vocabulary of Probability Theory.- 2. Events and Probability.- 3. Random Variables and Their Distributions.- 4. Conditional Probability and Independence.- 5. Solving Elementary Problems.- 6. Counting and Probability.- 7. Concrete Probability Spaces.- Illustration 1. A Simple Model in Genetics: Mendel’s Law and Hardy—Weinberg’s Theorem.- Illustration 2. The Art of Counting: The Ballot Problem and the Reflection Principle.- Illustration 3. Bertrand’s Paradox.- 2 Discrete Probability.- 1. Discrete Random Elements.- 2. Variance and Chebyshev’s Inequality.- 3. Generating Functions.- Illustration 4. An Introduction to Population Theory: Galton—Watson’s Branching Process.- Illustration 5. Shannon’s Source Coding Theorem: An Introduction to Information Theory.- 3 Probability Densities.- I. Expectation of Random Variables with a Density.- 2. Expectation of Functionals of Random Vectors.- 3. Independence.- 4. Random Variables That Are Not Discrete and Do Not Have a pd.- Illustration 6. Buffon’s Needle: A Problem in Random Geometry.- 4 Gauss and Poisson.- 1. Smooth Change of Variables.- 2. Gaussian Vectors.- 3. Poisson Processes.- 4. Gaussian Stochastic Processes.- Illustration 7. An Introduction to Bayesian Decision Theory: Tests of Gaussian Hypotheses.- 5 Convergences.- 1. Almost-Sure Convergence.- 2. Convergence in Law.- 3. The Hierarchy of Convergences.- Illustration 8. A Statistical Procedure: The Chi-Square Test.- Illustration 9. Introduction to Signal Theory: Filtering.- Additional Exercises.- Solutions to Additional Exercises.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.