Brunault / Zudilin | Many Variations of Mahler Measures | Buch | 978-1-108-79445-9 | sack.de

Buch, Englisch, Band 28, 180 Seiten, Format (B × H): 155 mm x 225 mm, Gewicht: 272 g

Reihe: Australian Mathematical Society Lecture Series

Brunault / Zudilin

Many Variations of Mahler Measures

A Lasting Symphony
Erscheinungsjahr 2020
ISBN: 978-1-108-79445-9
Verlag: Cambridge University Press

A Lasting Symphony

Buch, Englisch, Band 28, 180 Seiten, Format (B × H): 155 mm x 225 mm, Gewicht: 272 g

Reihe: Australian Mathematical Society Lecture Series

ISBN: 978-1-108-79445-9
Verlag: Cambridge University Press


The Mahler measure is a fascinating notion and an exciting topic in contemporary mathematics, interconnecting with subjects as diverse as number theory, analysis, arithmetic geometry, special functions and random walks. This friendly and concise introduction to the Mahler measure is a valuable resource for both graduate courses and self-study. It provides the reader with the necessary background material, before presenting the recent achievements and the remaining challenges in the field. The first part introduces the univariate Mahler measure and addresses Lehmer's question, and then discusses techniques of reducing multivariate measures to hypergeometric functions. The second part touches on the novelties of the subject, especially the relation with elliptic curves, modular forms and special values of L-functions. Finally, the Appendix presents the modern definition of motivic cohomology and regulator maps, as well as Deligne–Beilinson cohomology. The text includes many exercises to test comprehension and challenge readers of all abilities.

Brunault / Zudilin Many Variations of Mahler Measures jetzt bestellen!

Weitere Infos & Material


1. Some basics; 2. Lehmer's problem; 3. Multivariate setting; 4. The dilogarithm; 5. Differential equations for families of Mahler measures; 6. Random walk; 7. The regulator map for $K_2$ of curves; 8. Deninger's method for multivariate polynomials; 9. The Rogers–Zudilin method; 10. Modular regulators; Appendix. Motivic cohomology and regulator maps; References; Author Index; Subject index.


Brunault, François
François Brunault is Associate Professor at École Normale Supérieure, Lyon in France, and is a member of the Mathematical Society of France. He is an arithmetic geometer with interest in elliptic curves, modular forms and L-functions, both from a theoretical and explicit point of view.

Zudilin, Wadim
Wadim Zudilin is Professor of Pure Mathematics at Radboud University Nijmegen, known for his results that make use of special functions in number theory, in particular, about the irrationality for the values of Riemann's zeta function at positive integers. He co-authored the book Neverending Fractions: An Introduction to Continued Fractions (Cambridge, 2014).



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.