Bruns / Gubeladze | Polytopes, Rings, and K-Theory | Buch | 978-1-4419-2617-3 | www.sack.de

Buch, Englisch, 461 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g

Reihe: Springer Monographs in Mathematics

Bruns / Gubeladze

Polytopes, Rings, and K-Theory


Softcover Nachdruck of hardcover 1. Auflage 2009
ISBN: 978-1-4419-2617-3
Verlag: Springer

Buch, Englisch, 461 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 715 g

Reihe: Springer Monographs in Mathematics

ISBN: 978-1-4419-2617-3
Verlag: Springer


For every mathematician, ring theory and K-theory are intimately connected: al- braic K-theory is largely the K-theory of rings. At ?rst sight, polytopes, by their very nature, must appear alien to surveyors of this heartland of algebra. But in the presence of a discrete structure, polytopes de?ne a?ne monoids, and, in their turn, a?ne monoids give rise to monoid algebras. Teir spectra are the building blocks of toric varieties, an area that has developed rapidly in the last four decades. From a purely systematic viewpoint, “monoids” should therefore replace “po- topes” in the title of the book. However, such a change would conceal the geometric ?avor that we have tried to preserve through all chapters. Before delving into a description of the contents we would like to mention three general features of the book: (?) the exhibiting of interactions of convex geometry, ring theory, and K-theory is not the only goal; we present some of the central results in each of these ?elds; (?) the exposition is of constructive (i. e., algorithmic) nature at many places throughout the text—there is no doubt that one of the driving forces behind the current popularity of combinatorial geometry is the quest for visualization and computation; (?) despite the large amount of information from various ?elds, we have strived to keep the polytopal perspective as the major organizational principle.

Bruns / Gubeladze Polytopes, Rings, and K-Theory jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I Cones, monoids, and triangulations.- Polytopes, cones, and complexes.- Affine monoids and their Hilbert bases.- Multiples of lattice polytopes.- II Affine monoid algebras.- Monoid algebras.- Isomorphisms and automorphisms.- Homological properties and Hilbert functions.- Gr#x00F6;bner bases, triangulations, and Koszul algebras.- III K-theory.- Projective modules over monoid rings.- Bass#x2013;Whitehead groups of monoid rings.- Varieties.


Winfried Bruns is Professor of Mathematics at Universität Osnabrück.
Joseph Gubeladze is Professor of Mathematics at San Francisco State University.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.