Carena | Cereals | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 3, 432 Seiten

Reihe: Handbook of Plant Breeding

Carena Cereals


1. Auflage 2009
ISBN: 978-0-387-72297-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 3, 432 Seiten

Reihe: Handbook of Plant Breeding

ISBN: 978-0-387-72297-9
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



Agriculture depends on improved cultivars, and cultivars are developed through proper plant breeding. Unfortunately, applied plant breeding programs that are focused on cereal commodity crops are under serious erosion because of lack of funding. This loss of public support affects breeding continuity, objectivity, and, perhaps equally important, the training of future plant breeders and the utilization and improvement of plant genetic resources currently available. Breeding programs should focus not only on short-term research goals but also on long-term genetic improvement of germplasm. The research products of breeding programs are important not only for food security but also for commodity-oriented public and private programs, especially in the fringes of crop production. Breeding strategies used for long-term selection are often neglected but the reality is that long-term research is needed for the success of short-term products. An excellent example is that genetically broad-based public germplasm has significantly been utilized and recycled by industry, producing billions of dollars for industry and farmers before intellectual property rights were available. Successful examples of breeding continuity have served the sustainable cereal crop production that we currently have. The fact that farmers rely on public and private breeding institutions for solving long-term challenges should influence policy makers to reverse this trend of reduced funding. Joint cooperation between industry and public institutions would be a good example to follow. The objective of this volume is to increase the utilization of useful genetic resources and increase awareness of the relative value and impact of plant breeding and biotechnology. That should lead to a more sustainable crop production and ultimately food security. Applied plant breeding will continue to be the foundation to which molecular markers are applied. Focusing useful molecular techniques on the right traits will build a strong linkage between genomics and plant breeding and lead to new and better cultivars. Therefore, more than ever there is a need for better communication and cooperation among scientists in the plant breeding and biotechnology areas. We have an opportunity to greatly enhance agricultural production by applying the results of this research to meet the growing demands for food security and environmental conservation. Ensuring strong applied plant breeding programs with successful application of molecular markers will be essential in ensuring such sustainable use of plant genetic resources.

Marcelo Carena is Associate Professor from the Department of Plant Sciences at the North Dakota State University (NDSU), Fargo, ND, USA. Since 1999, Dr. Carena is the Director of the NDSU Corn Breeding and Genetics Program, the most northern public corn research program in North America focused on increasing genetic diversity, drought tolerance, and grain quality in early maturing maize. He teaches Quantitative Genetics and Crop Breeding Techniques at NDSU. Prof. Carena is currently Editor of Euphytica and Maydica, and Chair of the Crop Science Society of America Maize Registration Committee. Dr. Carena has trained five Ph.D. and eight MS students, two Visiting Scientists, and several interns over the past 10 years. In the same time, he has released eight early maturing corn inbred lines, has released four improved early maturing populations, and has published over 50 scientific papers, abstracts, book chapters, and editions on corn breeding and genetics.

Carena Cereals jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;134261_1_En_FM1_Chapter_OnlinePDF.pdf;2
1.1;Preface;6
1.2;Contents;6
1.3;Contributors;6
2;134261_1_En_Section-I_OnlinePDF.pdf;15
2.1;Section I: Cereal Crop Breeding;15
3;134261_1_En_1_Chapter_OnlinePDF.pdf;16
3.1;: Maize Breeding;16
3.1.1;1 Introduction;17
3.1.2;2 General;20
3.1.3;3 PreBreeding;21
3.1.4;4 Recurrent Selection;35
3.1.5;5 Inheritance of Quantitative Traits;51
3.1.6;6 Inbred Line Development;60
3.1.7;7 Doubled Haploids;72
3.1.8;8 Hybrids;74
3.1.9;9 Types of Hybrids;79
3.1.10;10 Heterotic Groups;81
3.1.11;11 Heterosis;83
3.1.12;12 Stability of Cultivars;85
3.1.13;13 Selection Indices;87
3.1.14;14 Summary;94
3.1.15;References;99
4;134261_1_En_2_Chapter_OnlinePDF.pdf;112
4.1;: Rice Breeding;112
4.1.1;1 Introduction;112
4.1.2;2 Genetic Diversity;113
4.1.3;3 Choice of Germplasm;116
4.1.4;4 Major Breeding Achievements;118
4.1.4.1;4.1 The Rice Green Revolution;118
4.1.4.2;4.2 The New Plant Type;118
4.1.4.3;4.3 Hybrid Rice;119
4.1.4.4;4.4 NERICA Rice;120
4.1.5;5 Current Breeding Goals;121
4.1.6;6 Breeding Methods and Techniques;122
4.1.6.1;6.1 Conventional Rice Breeding Methods;122
4.1.6.2;6.2 Population Improvement Through Recurrent Selection;122
4.1.6.3;6.3 Hybrid Rice;126
4.1.6.4;6.4 Mutation Breeding;127
4.1.7;7 Integration of New Biotechnologies in Breeding Programs;128
4.1.8;8 Foundation Seed Production;130
4.1.9;9 Rice Breeding Capacity Around the World;130
4.1.10;References;133
5;134261_1_En_3_Chapter_OnlinePDF.pdf;140
5.1;: Spring Wheat Breeding;140
5.1.1;1 Introduction;141
5.1.1.1;1.1 Wheat Uses;142
5.1.1.2;1.2 Breads;142
5.1.1.3;1.3 Flour Noodles;143
5.1.1.4;1.4 Breakfast Cereals and Cereal Bars;143
5.1.1.5;1.5 Cookies and Cakes;143
5.1.1.6;1.6 Blending;143
5.1.2;2 Genetics;144
5.1.3;3 Wheat Gene Pools;145
5.1.4;4 Varietal Groups/Classes;146
5.1.5;5 Current Goals of Wheat Breeding;147
5.1.5.1;5.1 Grain Yield;147
5.1.5.2;5.2 Grain Quality;148
5.1.5.3;5.3 Resistance to Biotic Stresses;149
5.1.5.4;5.4 Tolerance to Abiotic Stresses;150
5.1.6;6 Breeding Methods and Techniques;151
5.1.6.1;6.1 Backcrossing Selection;151
5.1.6.2;6.2 Pedigree Selection;151
5.1.6.3;6.3 Bulk Selection;152
5.1.6.4;6.4 Single Seed Descent;152
5.1.6.5;6.5 Recurrent Selection;153
5.1.6.6;6.6 Double Haploidy;153
5.1.6.7;6.7 Hybrid Wheat;153
5.1.6.8;6.8 Mutation Breeding;154
5.1.6.9;6.9 Shuttle Breeding;154
5.1.6.10;6.10 Marker-Assisted Selection;155
5.1.7;7 Major Breeding Achievements;156
5.1.7.1;7.1 Grain Yield;156
5.1.7.2;7.2 Grain Quality;157
5.1.7.3;7.3 Resistance to Diseases and Pests;159
5.1.7.4;7.4 Tolerance to Abiotic Stresses;162
5.1.8;8 Integration of Novel Technologies in Breeding Programs;162
5.1.9;9 Foundation Seed Production and Intellectual Property Issues;164
5.1.10;10 Future Prospects;165
5.1.11;References;166
6;134261_1_En_4_Chapter_OnlinePDF.pdf;170
6.1;: Rye Breeding;170
6.1.1;1 Introduction;171
6.1.2;2 Germplasm and Use of Genetic Resources;172
6.1.3;3 Disease Resistance;173
6.1.4;4 Use and Breeding Goals;176
6.1.5;5 Breeding Methods and Techniques;177
6.1.5.1;5.1 Population Breeding;177
6.1.5.2;5.2 Hybrid Breeding;181
6.1.5.3;5.3 Commercial Hybrid Seed Production;186
6.1.5.4;5.4 Integrating Population and Hybrid Breeding;188
6.1.6;6 Major Achievements of Breeding;189
6.1.7;References;191
7;134261_1_En_5_Chapter_OnlinePDF.pdf;195
7.1;: Grain Sorghum Breeding;195
7.1.1;1 Introduction;195
7.1.2;2 Origin of Sorghum bicolor (L.) Moench;196
7.1.3;3 Taxonomy of the Genus Sorghum;196
7.1.4;4 Cytogenetics and Genetics of S. bicolor (L.) Moench;197
7.1.5;5 Sources of Genetic Diversity;197
7.1.6;6 Sorghum Breeding in Australia;198
7.1.6.1;6.1 Resistance to the Sorghum Midge (Stenodiplosis sorghicola [Coquillette]);198
7.1.7;7 Drought Resistance Breeding;202
7.1.7.1;7.1 Indirect Selection for Drought Resistance;202
7.1.7.2;7.2 Direct Selection for Drought Resistance;205
7.1.8;8 Conclusions;206
7.1.9;Acknowledgements;207
7.1.10;References;207
8;134261_1_En_6_Chapter_OnlinePDF.pdf;210
8.1;: Durum Wheat Breeding;210
8.1.1;1 Introduction;210
8.1.2;2 Genetic Diversity;211
8.1.3;3 Choice of Germplasm;213
8.1.4;4 Varietal Groups;215
8.1.4.1;4.1 The Italian Pool;215
8.1.4.2;4.2 The CIMMYT Pool;216
8.1.4.3;4.3 The North American Pool;216
8.1.4.4;4.4 The Winter Pool;219
8.1.5;5 Major Breeding Achievements;219
8.1.6;6 Current Goals of Breeding;224
8.1.7;7 Breeding Methods and Techniques;226
8.1.8;8 Integration of New Biotechnologies in Breeding Programs;228
8.1.9;9 Foundation Seed Production and Intellectual Property Issues;228
8.1.10;References;230
9;134261_1_En_7_Chapter_OnlinePDF.pdf;238
9.1;: Barley;238
9.1.1;1 Introduction;238
9.1.2;2 Genetic Diversity;239
9.1.3;3 Types of Barley;239
9.1.4;4 Choice of Germplasm;242
9.1.5;5 Major Breeding Achievements;244
9.1.6;6 Current Goals of Breeding;245
9.1.7;7 Breeding Methods and Techniques;248
9.1.7.1;7.1 NDSU Breeding Scheme;249
9.1.7.2;7.2 Year 1;249
9.1.7.3;7.3 Year 2;249
9.1.7.4;7.4 Year 3;250
9.1.7.5;7.5 Year 4;250
9.1.7.6;7.6 Year 5;251
9.1.7.7;7.7 Year 6;251
9.1.7.8;7.8 Year 7;251
9.1.7.9;7.9 Year 8;252
9.1.7.10;7.10 Year 9;252
9.1.7.11;7.11 Year 10;252
9.1.8;8 Integration of New Biotechnologies in Breeding Programs;253
9.1.9;9 Cultivar Release and Intellectual Property Issues;254
9.1.9.1;9.1 Australia;254
9.1.9.2;9.2 Canada;255
9.1.9.3;9.3 European Union;256
9.1.9.4;9.4 United States;258
9.1.10;Acknowledgments;258
9.1.11;References;259
10;134261_1_En_8_Chapter_OnlinePDF.pdf;262
10.1;: Winter and Specialty Wheat;262
10.1.1;1 Introduction;262
10.1.2;2 Genetic Diversity and Germplasm Selection;263
10.1.3;3 Varietal Groups;265
10.1.4;4 Breeding for End Use Quality;268
10.1.5;5 Breeding Methods;270
10.1.6;6 Transgenic Wheats;270
10.1.7;7 Foundation Seed Production and Intellectual Property Issues;273
10.1.8;References;274
11;134261_1_En_Section-II_OnlinePDF.pdf;1
11.1;Section II: Adding Value to Breeding;1
12;134261_1_En_9_Chapter_OnlinePDF.pdf;277
12.1;: Triticale: A ``New´´ Crop with Old Challenges;277
12.1.1;HeadingsSec1_9;277
12.1.2;1 Introduction;277
12.1.3;2 Uses;279
12.1.3.1;2.1 Feed Grain;279
12.1.3.2;2.2 Food Grain;279
12.1.3.3;2.3 Forage Crop;280
12.1.3.4;2.4 Other Uses;282
12.1.4;3 Genetics;282
12.1.5;4 Early Triticale Breeding;283
12.1.6;5 Achievements in Triticale Breeding;284
12.1.6.1;5.1 Yield Increase;284
12.1.6.2;5.2 Adaptation;285
12.1.6.3;5.3 Enhanced Quality;286
12.1.6.4;5.4 Biotic Resistance;287
12.1.7;6 Breeding Strategies;287
12.1.7.1;6.1 Shuttle Breeding;289
12.1.7.2;6.2 Hybrid Triticale;289
12.1.7.3;6.3 Double Haploids;290
12.1.7.4;6.4 Marker-Assisted Selection;290
12.1.7.5;6.5 Genetic Transformation;291
12.1.8;7 Future Challenges;291
12.1.8.1;7.1 Adaptation;292
12.1.8.2;7.2 Uses;292
12.1.8.3;7.3 Genetic Diversity;293
12.1.8.4;7.4 Genomics;293
12.1.8.5;7.5 Health Issues;294
12.1.9;References;295
13;134261_1_En_10_Chapter_OnlinePDF.pdf;299
13.1;: Statistical Analyses of Genotype by Environment Data;299
13.1.1;1 Introduction;299
13.1.2;2 An Example Data Set: Grain Yield of 65 Modern Barley Cultivars Grown in 12 Mediterranean Environments;301
13.1.2.1;2.1 Genotyping;302
13.1.2.2;2.2 Phenotyping;305
13.1.2.3;2.3 Explicit Environmental Characterization;307
13.1.3;3 Phenotype-Based Statistical Analyses of Two-Way GE Tables: Assessment and Partitioning of the Variability;308
13.1.3.1;3.1 The Additive Model;308
13.1.3.2;3.2 The Full Interaction Model;309
13.1.3.3;3.3 Reduced Interaction Model: Clustering of Genotypes and Environments;312
13.1.3.4;3.4 Modelling the Interaction Using Phenotypic Characterizations of the Environment;315
13.1.3.5;3.5 Other Linear-Bilinear Models;316
13.1.4;4 Models for Interaction Using Explicit Environmental Characterizations;321
13.1.4.1;4.1 Factorial Regression Models;321
13.1.4.2;4.2 Variable Selection;321
13.1.5;5 Models for Interaction Incorporating Explicit Genotypic Information;324
13.1.6;6 Models for Interaction Simultaneously Incorporating Explicit Environmental and Genotypic Information;332
13.1.7;7 Conclusions;335
13.1.8;Acknowledgements;336
13.1.9;References;336
14;134261_1_En_11_Chapter_OnlinePDF.pdf;340
14.1;: Breeding for Quality Traits in Cereals: A Revised Outlook on Old and New Tools for Integrated Breeding;340
14.1.1;1 Introduction: The Need for an Upgrading of the Classical Holistic Tools of the Plant Breeder to Breed for Complex Quality Tr;341
14.1.2;2 Analyses and Data Models in Screening for Simple and Complex Quality Traits and the Genes Behind;341
14.1.2.1;2.1 Screening and Validation Methods for Technological and Physical-Chemical Quality;341
14.1.2.2;2.2 Nondestructive Screening for Quality Traits and Improved Genotypes by NIR Spectroscopy Evaluated by Pattern Recognition Da;342
14.1.2.3;2.3 QTL Analyses for Complex Traits Revitalized by Chemometrics;344
14.1.2.4;2.4 Characterizing and Connecting Complex Genetic, Biochemical, and Technological Traits in Cereal Variety Testing;345
14.1.3;3 Quality Traits in Cereal Technology and Plant Breeding;348
14.1.3.1;3.1 Wheat;348
14.1.3.2;3.2 Barley;349
14.1.3.3;3.3 Rye;350
14.1.3.4;3.4 Oats;351
14.1.3.5;3.5 Rice;351
14.1.3.6;3.6 Maize;352
14.1.3.7;3.7 Sorghum and Millets;354
14.1.4;4 Quality Aspects in Breeding Cereals for Whole Crop Utilization in the Nonfood and Food Industries;355
14.1.5;5 Breeding for Nutritional Quality;357
14.1.6;6 Mutation Breeding for Endosperm Quality Traits;358
14.1.7;7 Four Examples on How NIR Technology Supports Advances in Plant Breeding, Seed Sorting, and Plant Science;359
14.1.7.1;7.1 ``Data Breeding´´: NIR Spectra of Barley Endosperm Mutants Evaluated by PCA Support a Selection for Complex Trai;359
14.1.7.2;7.2 The Chemical Composition of the Endosperm Is a Response Interface for Mutants and Genotypes that Facilitates Spectral NIR;363
14.1.7.3;7.3 Classification of Wheat Genotypes from a Gene Bank by Their Spectral and Physical-Chemical Fingerprints Correlated to Qual;364
14.1.7.4;7.4 Seed Sorting for Complex Quality Traits by NIR Technology;367
14.1.8;8 The Economy in Breeding and Sorting for Complex Quality Traits in Cereals in the Future;368
14.1.9;Acknowledgments;368
14.1.10;References;368
15;134261_1_En_12_Chapter_OnlinePDF.pdf;374
15.1;: Breeding for Silage Quality Traits in Cereals;374
15.1.1;1 Introduction;375
15.1.2;2 Genetic Variations for Cell Wall Digestibility in Cereals;376
15.1.2.1;2.1 Devising an Estimate of Cell Wall Digestibility;376
15.1.2.2;2.2 Genetic Variation for Cell Wall Digestibility in Maize;377
15.1.2.3;2.3 Genetic Variation for Cell Wall Digestibility in Sorghum and Small-Grain Cereals;378
15.1.3;3 Intake as a Primary Nutritional Factor of Cattle Fed Cereal Silages or Straws;380
15.1.3.1;3.1 Genetic Variation for Intake in Cereal Silages;380
15.1.3.2;3.2 Devising a Breeding Criterion for Genetic Improvement of Intake;380
15.1.4;4 Genetic Resources for Cell Wall Digestibility Improvement;381
15.1.4.1;4.1 Necessity of Specific Genetic Resources for the Improvement of Feeding Value Traits;381
15.1.4.2;4.2 Availability of Genetic Resources for Cell Wall Digestibility Improvement;382
15.1.4.3;4.3 Feeding Value Improvement Based on Brown-Midrib Mutations;383
15.1.5;5 Investigating Quantitative Trait Loci for Cell Wall Digestibility Improvement;386
15.1.6;6 Targeted Investigations of Genetic Resources for Cell Wall Digestibility Improvement;388
15.1.7;7 Conclusion;393
15.1.8;References;394
16;134261_1_En_13_Chapter_OnlinePDF.pdf;402
16.1;: Participatory Plant Breeding in Cereals;402
16.1.1;1 Introduction;403
16.1.2;2 Genotype Environment Interactions and Breeding Strategies;404
16.1.3;3 Defining Decentralized PPB;407
16.1.4;4 A Model of Decentralized PPB for Self-Pollinated Crops;409
16.1.4.1;4.1 The Model;409
16.1.4.2;4.2 Farmers´ Selection and Data Collection;411
16.1.4.3;4.3 Experimental Designs and Statistical Analysis;411
16.1.4.4;4.4 Time to Variety Release;412
16.1.4.5;4.5 Effect on Biodiversity;412
16.1.5;5 Variety Release and Seed Production;413
16.1.6;6 Impact of PPB;415
16.1.7;7 Conclusions;418
16.1.8;Acknowledgments;419
16.1.9;References;419
17;134261_1_En_BM2_Chapter_OnlinePDF.pdf;422
17.1;: Index;422
18;134261_1_En_Section-II_OnlinePDF.pdf;1
18.1;Section II: Adding Value to Breeding;298



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.