Challa / Aujla / Mathew | Artificial Intelligence of Things | Buch | 978-3-031-48780-4 | www.sack.de

Buch, Englisch, 387 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

Challa / Aujla / Mathew

Artificial Intelligence of Things

First International Conference, ICAIoT 2023, Chandigarh, India, March 30-31, 2023, Revised Selected Papers, Part II
1. Auflage 2024
ISBN: 978-3-031-48780-4
Verlag: Springer Nature Switzerland

First International Conference, ICAIoT 2023, Chandigarh, India, March 30-31, 2023, Revised Selected Papers, Part II

Buch, Englisch, 387 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 633 g

Reihe: Communications in Computer and Information Science

ISBN: 978-3-031-48780-4
Verlag: Springer Nature Switzerland


These two volumes constitute the revised selected papers of First International Conference, ICAIoT 2023, held in Chandigarh, India, during March 30–31, 2023.

The 47 full papers and the 10 short papers included in this volume were carefully reviewed and selected from 401 submissions. The two books focus on research issues, opportunities and challenges of AI and IoT applications. They present the most recent innovations, trends, and concerns as well as practical challenges encountered and solutions adopted in the fields of AI algorithms implementation in IoT Systems

Challa / Aujla / Mathew Artificial Intelligence of Things jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


Amalgamation of Machine Learning Techniques with Optical Systems: A Futuristic Approach.- Antenna Array Fault Detection Using Logistic Regression Technique.- Internet Based Routing in Vehicular Named Data Networking.- A Very Deep Adaptive Convolutional Neural Network (VDACNN) for Image Dehazing.- Automatic Door Unlocking System using Facemask Detection and Thermal Screening.- Deep Learning based Face Recognition System for Automated Identification.- Desirability Function Analysis Based Optimization of the On-machine Diameter Measurement Using Machine Vision Under RGB Light.- An Analysis of Detection and Recognition of Human Face Using Support Vector Machine.- An Enhanced PSO-Based Energy Efficient Clustering Routing Algorithm for Wireless Sensor Network.- Machine Learning based Incipient Fault Diagnosis of Induction Motor.-Role of Federated Learning for Internet of Vehicles: A Systematic Review.- Optimal Rescheduling for Transmission Congestion Management using Intelligent Hybrid Optimization.- Predictive Load Management Using IoT and Data Analytics.
A BERT Classifier Approach for Evaluation of Fake News Dissemination.- Emoji Based Sentiment Classification using Machine Learning Approach.- Comparative Analysis of Structural Characteristics of Social Networks and their Relevance in Community Detection.- A Meta-Data Based Feature Selection Mechanism to Identify Suspicious Reviews.- Fake News Detection using Machine Learning.- Tuning of Hyperparameters and CNN Architecture to Detect Phone Usage During Driving.- Security Defect Identification of Android Applications by Permission Extraction using Machine Learning.- Analysis of Employee Attrition using Statistical and Machine Learning Approaches.- A Time Series Analysis-Based Stock Price Prediction Framework Using Artificial Intelligence.- Towards Better English to Bharti Braille Neural Machine Translation Through Improved Name Entity Translation.- Real-Time AI-Enabled Cyber-Physical System Based Cattle Disease Detection System.- Unlocking the Power of Al: A Real-Time Translation of Sign Language to Text.- AI-Assisted Geopolymer Concrete Mix Design: A Step Towards Sustainable Construction.- Deep Learning Mechanism for Region based Urban Traffic Flow Forecasting.- IoT Enabled Framework for Smart Home Automation using Artificial Intelligence and Blockchain Technology.- Big Data Techniques Utilization in Intelligent Transportation System Environment.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.