Buch, Englisch, 318 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g
Buch, Englisch, 318 Seiten, Previously published in hardcover, Format (B × H): 155 mm x 235 mm, Gewicht: 499 g
ISBN: 978-3-642-07165-2
Verlag: Springer
In this book, several world experts present (one part of) the mathematical heritage of Kolmogorov. Each chapter treats one of his research themes or a subject invented as a consequence of his discoveries. The authors present his contributions, his methods, the perspectives he opened to us, and the way in which this research has evolved up to now. Coverage also includes examples of recent applications and a presentation of the modern prospects.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Mathematische Analysis Harmonische Analysis, Fourier-Mathematik
- Mathematik | Informatik Mathematik Mathematik Allgemein Geschichte der Mathematik
- Interdisziplinäres Wissenschaften Wissenschaften: Allgemeines Geschichte der Naturwissenschaften, Formalen Wissenschaften & Technik
- Naturwissenschaften Physik Angewandte Physik Statistische Physik, Dynamische Systeme
- Mathematik | Informatik Mathematik Topologie Mengentheoretische Topologie
- Mathematik | Informatik Mathematik Mathematik Allgemein Grundlagen der Mathematik
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
- Mathematik | Informatik Mathematik Stochastik Mathematische Statistik
Weitere Infos & Material
The youth of Andrei Nikolaevich and Fourier series.- Kolmogorov’s contribution to intuitionistic logic.- Some aspects of the probabilistic work.- Infinite dimensional Kolmogorov equations.- From Kolmogorov’s theorem on empirical distribution to number theory.- Kolmogorov’s ?-entropy and the problem of statistical estimation.- Kolmogorov and topology.- Geometry and approximation theory in A. N. Kolmogorov’s works.- Kolmogorov and population dynamics.- Resonances and small divisors.- The KAM Theorem.- From Kolmogorov’s Work on entropy of dynamical systems to Non-uniformly hyperbolic dynamics.- From Hilbert’s 13th Problem to the theory of neural networks: constructive aspects of Kolmogorov’s Superposition Theorem.- Kolmogorov Complexity.- Algorithmic Chaos and the Incompressibility Method.




