Buch, Englisch, 272 Seiten, Format (B × H): 163 mm x 243 mm, Gewicht: 572 g
Buch, Englisch, 272 Seiten, Format (B × H): 163 mm x 243 mm, Gewicht: 572 g
ISBN: 978-1-58488-213-8
Verlag: Taylor & Francis Inc
Although research in curve shortening flow has been very active for nearly 20 years, the results of those efforts have remained scattered throughout the literature. For the first time, The Curve Shortening Problem collects and illuminates those results in a comprehensive, rigorous, and self-contained account of the fundamental results.
The authors present a complete treatment of the Gage-Hamilton theorem, a clear, detailed exposition of Grayson's convexity theorem, a systematic discussion of invariant solutions, applications to the existence of simple closed geodesics on a surface, and a new, almost convexity theorem for the generalized curve shortening problem.
Many questions regarding curve shortening remain outstanding. With its careful exposition and complete guide to the literature, The Curve Shortening Problem provides not only an outstanding starting point for graduate students and new investigations, but a superb reference that presents intriguing new results for those already active in the field.
Zielgruppe
Graduate students and researchers in differential geometry, global analysis, and nonlinear evolution equations, graduate students and researchers in analysis and applied mathematicians
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Algebra Homologische Algebra
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Angewandte Mathematik, Mathematische Modelle
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Computeranwendungen in der Mathematik
- Mathematik | Informatik Mathematik Geometrie Differentialgeometrie
- Mathematik | Informatik Mathematik Mathematische Analysis Differentialrechnungen und -gleichungen
Weitere Infos & Material
Basic Results. Invariant Solutions for the Curve Shortening Flow. The Curvature-Eikonal Flow for Convex Curves. The Convex Generalized Curve Shortening Flow. The Non-Convex Curve Shortening Flow. A Class of Non-Convex Anisotropic Flows. Embedded Closed Geodesic on Surfaces. The Non-Convex Generalized Curve Shortening Flow. Bibliography.