Csákány / Schmidt | Contributions to Universal Algebra | E-Book | www.sack.de
E-Book

E-Book, Englisch, 608 Seiten, Web PDF

Csákány / Schmidt Contributions to Universal Algebra


1. Auflage 2014
ISBN: 978-1-4831-0302-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 608 Seiten, Web PDF

ISBN: 978-1-4831-0302-0
Verlag: Elsevier Science & Techn.
Format: PDF
Kopierschutz: 1 - PDF Watermark



Contributions to Universal Algebra focuses on the study of algebra. The compilation first discusses the congruence lattice of pseudo-simple algebras; elementary properties of limit reduced powers with applications to Boolean powers; and congruent lattices of 2-valued algebras. The book further looks at duality for algebras; weak homomorphisms of stone algebras; varieties of modular lattices not generated by their finite dimensional members; and remarks on algebraic operations of stone algebras. The text describes polynomial normal forms and the embedding of polynomial algebras; coverings in the lattice of varieties; embedding semigroups in semigroups generated by idempotents; and endomorphism semigroups and subgroupoid lattices. The book also discusses a report on sublattices of a free lattice, and then presents the cycles in finite semi-distributive lattices; cycles in S-lattices; and summary of results. The text also describes primitive subsets of algebras, ideals, normal sets, and congruences, as well as Jacobson's density theorem. The book is a good source for readers wanting to study algebra.

Csákány / Schmidt Contributions to Universal Algebra jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Front Cover;1
2;Contributions to Universal Algebra;2
3;Copyright Page;3
4;PREFACE;4
5;CONTENTS;6
6;LIST OF PARTICIPANTS;11
7;Chapter 1. ON THE CONGRUENCE LATTICE OF PSEUDO-SIMPLE ALGEBRAS;16
7.1;REFERENCES;21
8;Chapter 2. ELEMENTARY PROPERTIES OF LIMIT REDUCED POWERS WITH APPLICATIONS TO BOOLEAN POWERS;22
8.1;REFERENCES;25
9;Chapter 3. ON CONGRUENCE LATTICES OF 2-VALUED ALGEBRAS;28
9.1;REFERENCES;32
10;Chapter 4. THE c-IDEAL LATTICE AND SUBALGEBRA LATTICE ARE INDEPENDENT;34
10.1;1. PRELIMINARIES;34
10.2;2. THE CONCRETE CHARACTERIZATION;35
10.3;3. PROOF OF THE MAIN THEOREM;37
10.4;4. SOME REMARKS ON RELATED REPRESENTATIONPROBLEMS;39
10.5;REFERENCES;39
11;Chapter 5. /-GROUP-CONE AND BOOLEAN ALGEBRA. A COMMON ONE-IDENTITY-AXIOM;42
11.1;REFERENCES;57
12;Chapter 6. SPLITTING LATTICES AND CONGRUENCE MODULARITY*;58
12.1;§1. INTRODUCTION;58
12.2;§2. PRELIMINARIES;59
12.3;§3. THE CLASS;61
12.4;§5. CONCLUDING REMARKS;71
12.5;REFERENCES;72
13;Chapter 7. SOME REMARKS ON WEAK AUTOMORPHISMS;74
13.1;0. INTRODUCTION;74
13.2;1. HOLOMORPH AND WEAK AUTOMORPHISMS;76
13.3;2. REDUCIBLE ALGEBRAS;77
13.4;REFERENCES;81
14;Chapter 8. ON POLYNOMIAL ALGEBRAS;84
14.1;1. INTRODUCTION;84
14.2;2. SOME BASIC PROPERTIES OF K -POLYNOMIAL ALGEBRAS;85
14.3;3. ON THE CANONICAL HOMOMORPHISM FROM FREEALGEBRAS INTO POLYNOMIAL ALGEBRAS;88
14.4;4. SOME GENERALIZATIONS FROM POLYNOMIAL ALGEBRASTO UNIVERSAL PAIRS OVER PARTIAL ALGEBRAS;90
14.5;5. POLYNOMIAL ALGEBRAS AND POLYNOMIAL FUNCTION ALGEBRAS;92
14.6;REFERENCES;99
15;Chapter 9. DUALITY FOR ALGEBRAS;102
15.1;INTRODUCTION;102
15.2;TERMINOLOGY AND NOTATION;103
15.3;1. CHARACTERISTIC MAPS;103
15.4;2. THE REPRESENTATION THEOREM;106
15.5;3. SUFFICIENT CONDITIONS FOR BICENTRALITY;108
15.6;REFERENCES;112
16;Chapter 10. PROJECTIVE AND INJECTIVE VARIETIES OF ABELIAN O-ALGEBRAS;114
16.1;REFERENCES;132
17;Chapter 11. SOME VARIETIES OF MODULAR LATTICES NOT GENERATED BY THEIR FINITE DIMENSIONAL MEMBERS;134
17.1;REFERENCES;144
18;Chapter 12. ON WEAK HOMOMORPHISMS OF STONE ALGEBRAS;146
18.1;1. WEAK HOMOMORPHISMS OF GENERAL ALGEBRAS;146
18.2;2. REMARKS ON ALGEBRAIC OPERATIONS OF STONE ALGEBRAS;148
18.3;3. WEAK ISOMORPHISMS AND WEAK HOMOMORPHISMSOF STONE ALGEBRAS;155
18.4;REFERENCES;159
19;Chapter 13. ON THE SUMS OF DOUBLE SYSTEMS OF LATTICES AND DS-CONGRUENCES OF LATTICES;162
19.1;REFERENCES;166
20;Chapter 14. n-DISTRIBUTIVITY AND SOME QUESTIONS OF THE EQUATIONAL THEORY OF LATTICES;168
20.1;0. CONTENTS;168
20.2;1. PRELIMINARIES;169
20.3;2. APPLICATIONS OF n-DISTRIBUTIVITY TO THEEQUATIONAL THEORY OF LATTICES;170
20.4;3. ON THE LATTICE GENERATED BY THE VARIETIES;174
20.5;REFERENCES;178
21;Chapter 15. POLYNOMIAL NORMAL FORMS AND THE EMBEDDING OF POLYNOMIAL ALGEBRAS;180
21.1;1. INTRODUCTION;180
21.2;2. SUFFICIENT CONDITIONS FOR fAB TO BEAN EMBEDDING;181
21.3;3. EXAMPLES OF POLYNOMIAL NORMAL FORMS;182
21.4;REFERENCES;188
22;Chapter 16. COVERINGS IN THE LATTICE OF VARIETIES;190
22.1;REFERENCES;203
23;Chapter 17. EMBEDDING SEMIGROUPS IN SEMIGROUPS GENERATED BY IDEMPOTENTS;206
23.1;1. INTRODUCTION;206
23.2;2. EMBEDDING THEOREM;207
23.3;3. COUNTABLE SEMIGROUPS;208
23.4;REFERENCES;209
24;Chapter 18. ENDOMORPHISM SEMIGROUPS AND SUBGROUPOID LATTICES;210
25;Chapter 19. A NOTE ON IMPLICATIONAL SUBCATEGORIES;214
25.1;THE GALOIS-CORRESPONDENCE INDUCED BY INJECTIVITY WITH RESPECT TO A FIXED CLASS OF EPIMORPHISMS;218
25.2;SOME EXAMPLES IN CATEGORIES OF PARTIAL ALGEBRAS;220
25.3;REFERENCES;222
26;Chapter 20. A REPORT ON SUBLATTICES OF A FREE LATTICE;224
26.1;1. INTRODUCTION;224
26.2;2. A SUMMARY OF RESULTS;225
26.3;3. THE FINITELY GENERATED CASE OF THEOREM 2.1: (iii) IMPLIES (ii).;227
26.4;4. THE FINITELY GENERATED CASE:THE PROOF COMPLETED;230
26.5;5. THE INFINITELY GENERATED CASE;233
26.6;6. CYCLES IN FINITE SEMI-DISTRIBUTIVE LATTICES;236
26.7;7. CYCLES IN S-LATTICES: PRELIMINARIES;240
26.8;8. CYCLES IN S-LATTICES;245
26.9;9. A PROOF OF DAY'S THEOREM;247
26.10;10. SUMMARY, PROBLEMS, AND A COUNTEREXAMPLE;250
26.11;REFERENCES;257
27;Chapter 21. EXTENSIVE GROUPOID VARIETIES;260
27.1;1. INTRODUCTION;260
27.2;2. Mod (x = t), t BALANCED;262
27.3;10. MAIN THEOREMS;285
27.4;REFERENCES;286
28;Chapter 22. PRIMITIVE SUBSETS OF ALGEBRAS;288
28.1;INTRODUCTION;288
28.2;1. PRELIMINARIES AND STATEMENT OF RESULTS;289
28.3;2. PROOFS OF THE THEOREMS';290
28.4;REFERENCES;294
29;Chapter 23. IDEALS, NORMAL SETS AND CONGRUENCES;296
29.1;0. SUMMARY AND INTRODUCTION;296
29.2;1. p-DETERMINED CONGRUENCES;298
29.3;2. POLYNOMIALS DETERMINING ALL CONGRUENCES;300
29.4;3. IDEALS;303
29.5;REFERENCES;310
30;Chapter 24. A CHARACTERIZATION OF COMPLETE MODULAR p-ALGEBRAS;312
30.1;1. PRELIMINARIES;313
30.2;2. TRIPLE CHARACTERIZATION OF COMPLETE MODULAR p-ALGEBRAS;316
30.3;3. COMPLETE HOMOMORPHISMS AND COMPLETE SUBALGEBRASOF COMPLETE MODULAR p-ALGEBRAS;320
30.4;4. FILL-IN THEOREMS;326
30.5;REFERENCES;329
31;Chapter 25. JACOBSON'S DENSITY THEOREM IN UNIVERSAL ALGEBRA;332
31.1;REFERENCES;341
32;Chapter 26. CERTAIN QUESTIONS OF THE THEORY OF HOMOTOPY OF UNIVERSAL ALGEBRAS;342
32.1;1. BASIC CONCEPTS;343
32.2;2. HOMOTOPIES AND CONGRUENT FAMILIES OF EQUIVALENCES;345
32.3;3. HOMOTOPIES OF SOME CLASSICAL ALGEBRAIC SYSTEMS;350
32.4;4. SPECIAL MORPIDSMS IN A CATEGORY OF QUASIGROUPS;354
32.5;REFERENCES;355
33;Chapter 27. A THEOREM ON FINITE SUBLATTICES OF FREE LATTICES;358
33.1;REFERENCES;362
34;Chapter 28. A NOTE ON A PROBLEM OF GORALCÍK;364
35;Chapter 29. QUASI-DECOMPOSITIONS, EXACT SEQUENCES, AND TRIPLE SUMS OF SEMIGROUPS. I. GENERAL THEORY;366
35.1;§1. TRIPLES;368
35.2;§2. OUASI-DECOMPOSITIONS;370
35.3;§3. GLIVENKO OPERATORS, EXACTNESS;372
35.4;§4. LOCAL MULTIPLICATIONS, LIMITS;381
35.5;§5. SEMIGROUPS OF SEMIGROUPS;385
35.6;§6. SEMIMODULES, NAGATA'S IDEALIZATION PRODUCT;388
35.7;§7. SEMILATTICES OF SEMIGROUPS;393
35.8;REFERENCES;395
36;Chapter 30. QUASI-DECOMPOSITIONS, EXACT SEQUENCES, AND TRIPLE SUMS OF SEMIGROUPS. II. APPLICATIONS;400
36.1;§8. CLOSURE RETRACTIONS OF SEMILATTICES, LEFT ANDRIGHT BROUWERIAN ELEMENTS;401
36.2;§9. QUASI-DECOMPOSITIONS OF PSEUDO-COMPLEMENTEDSEMILATTICES;415
36.3;§10. QUASI-DECOMPOSITIONS OF BROUWERIAN SEMILATTICES:;421
37;Chapter 31. ENDOMORPHICALLY COMPLETE GROUPS;430
37.1;REFERENCES;435
38;Chapter 32. CONCRETE CATEGORIES WITH NON-INJECTIVE MONOMORPHISM;436
38.1;REFERENCES;440
39;Chapter 33. ON ALGEBRAS AS TREE AUTOMATA;442
39.1;INTRODUCTION;442
39.2;1. PRELIMINARIES;443
39.3;2. CONTEXT-FREE GRAMMARS AND RECOGNIZERS;446
39.4;3. CLASSES OF ALGEBRAS AND FAMILIES OF LANGUAGES;448
39.5;4. GROUPOID-RECOGNIZERS;450
39.6;5. CANTOR ALGEBRAS;453
39.7;REFERENCES;455
40;Chapter 34. ON AFFINE MODULES;458
40.1;REFERENCES;464
41;Chapter 35. EQUATIONAL LOGIC;466
41.1;1. ALGEBRAS;467
41.2;2. FREE ALGEBRAS;467
41.3;3. EQUATIONALLY DEFINED CLASSES;469
41.4;4. EQUATIONAL THEORIES;472
41.5;5. SUBDIRECT REPRESENTATION;473
41.6;6. EXAMPLES OF !–;474
41.7;7. BASES AND GENERIC ALGEBRAS;475
41.8;8. FINITELY BASED THEORIES;476
41.9;9. EQUIVALENT VARIETIES;478
41.10;10. ONE-BASED THEORIES;479
41.11;11. MINIMAL BASES;480
41.12;12. THE LATTICE OF VARIETIES (BEGINNING);481
41.13;13. EFFECTIVELY QUESTIONS;483
41.14;14. THE LATTICE OF VARIETIES (CONTINUED);485
41.15;15. SOME FURTHER INVARIANTS OF THE EQUIVALENCE CLASS OF VARIETY;490
41.16;16. GENERATION OF VARIETIES;493
41.17;17. MALCEV CONDITIONS;497
41.18;18. CONNECTIONS WITH TOPOLOGY;498
41.19;REFERENCES;499
42;Chapter 36. ON REGULAR ALGEBRAS;504
42.1;INTRODUCTION;504
42.2;NOTATIONS;505
42.3;§1. U-REGULARITY;505
42.4;§2. ATOMREGULARITY;510
42.5;§3. DEVIATION FROM THE CLASSICAL CASE;512
42.6;REFERENCES;514
43;Chapter 37. REMARKS ON FULLY INVARIANT CONGRUENCES;516
43.1;§0. INTRODUCTION;516
43.2;§1. ALGEBRAS WITH FEW F.I. CONGRUENCES;519
43.3;§2. NUCLEAR CONGRUENCES;533
43.4;§3. FULLY PRESERVING ENDOMORPHISMS;544
43.5;§4. FULLY INVARIANT SUBSETS;549
43.6;REFERENCES;554
44;Chapter 38. VARIETIES GENERATED BY QUASI-PRIMAL ALGEBRAS HAVE DECIDABLE THEORIES;556
44.1;§ 1. SUBSHEAVES OF CONSTANT SHEAVES:;558
44.2;§2. EMBEDDING SHEAVES INTO CONSTANT SHEAVES;561
44.3;§3. THE MAIN EMBEDDING THEOREM;563
44.4;§4. VARIETIES GENERATED BY OUASI-PRIMAL ALGEBRAS;566
44.5;§5. THE INTUITIONISTIC VERSION OF A CYLINDRIC ALGEBRA;571
44.6;REFERENCES;575
45;Chapter 39. ON THE POLYNOMIAL COMPLETENESS DEFECT OF UNIVERSAL ALGEBRAS;578
45.1;REFERENCES;580
46;Chapter 40. ON LATTICES FREELY GENERATED BY FINITE PARTIALLY ORDERED SETS;582
46.1;REFERENCES;593
47;Chapter 41. PROPER AND IMPROPER FREE ALGEBRAS;596
47.1;REFERENCES;602
48;PROBLEMS;604



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.