Da Prato | Kolmogorov Equations for Stochastic PDEs | Buch | 978-3-7643-7216-3 | sack.de

Buch, Englisch, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Advanced Courses in Mathematics - CRM Barcelona

Da Prato

Kolmogorov Equations for Stochastic PDEs


2004
ISBN: 978-3-7643-7216-3
Verlag: Springer

Buch, Englisch, 182 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 306 g

Reihe: Advanced Courses in Mathematics - CRM Barcelona

ISBN: 978-3-7643-7216-3
Verlag: Springer


This textbook gives an introduction to stochastic partial differential equations such as reaction-diffusion, Burgers and 2D Navier-Stokes equations, perturbed by noise. Several properties of corresponding transition semigroups are studied, such as Feller and strong Feller properties, irreducibility, existence and uniqueness of invariantg measures. Moreover, the transition semigroups are interpreted as generalized solutions of Kologorov equations.
The prerequisites are basic probability (including finite dimemsional stochastic differential equations), basic functional analysis and some elements of the theory of partial differential equations.

Da Prato Kolmogorov Equations for Stochastic PDEs jetzt bestellen!

Zielgruppe


Research


Autoren/Hrsg.


Weitere Infos & Material


1 Introduction and Preliminaries.- 1.1 Introduction.- 1.2 Preliminaries ix.- 2 Stochastic Perturbations of Linear Equations.- 2.1 Introduction.- 2.2 The stochastic convolution.- 2.3 The Ornstein—Uhlenbeck semigroup Rt.- 2.4 The case when Rt is strong Feller.- 2.5 Asymptotic behaviour of solutions, invariant measures.- 2.6 The transition semigroup in Lp(H, ?).- 2.7 Poincaré and log-Sobolev inequalities.- 2.8 Some complements.- 3 Stochastic Differential Equations with Lipschitz Nonlinearities.- 3.1 Introduction and setting of the problem.- 3.2 Existence, uniqueness and approximation.- 3.3 The transition semigroup.- 3.4 Invariant measure v.- 3.5 The transition semigroup in L2 (H, v).- 3.6 The integration by parts formula and its consequences.- 3.7 Comparison of v with a Gaussian measure.- 4 Reaction-Diffusion Equations.- 4.1 Introduction and setting of the problem.- 4.2 Solution of the stochastic differential equation.- 4.3 Feller and strong Feller properties.- 4.4 Irreducibility.- 4.5 Existence of invariant measure.- 4.6 The transition semigroup in L2 (H, v).- 4.7 The integration by parts formula and its consequences.- 4.8 Comparison of v with a Gaussian measure.- 4.9 Compactness of the embedding W1,2 (H, v) ? L2 (H, v).- 4.10 Gradient systems.- 5 The Stochastic Burgers Equation.- 5.1 Introduction and preliminaries.- 5.2 Solution of the stochastic differential equation.- 5.3 Estimates for the solutions.- 5.4 Estimates for the derivative of the solution w.r.t. the initial datum.- 5.5 Strong Feller property and irreducibility.- 5.6 Invariant measure v.- 5.6.1 Estimate of some integral with respect to v.- 5.7 Kolmogorov equation.- 6 The Stochastic 2D Navier—Stokes Equation.- 6.1 Introduction and preliminaries.- 6.2 Solution of the stochastic equation.- 6.3 Estimatesfor the solution.- 6.4 Invariant measure v.- 6.5 Kolmogorov equation.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.