Dechter | Reasoning with Probabilistic and Deterministic Graphical Models | Buch | 978-1-62705-197-2 | sack.de

Buch, Englisch, 191 Seiten, Paperback, Format (B × H): 195 mm x 236 mm, Gewicht: 359 g

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

Dechter

Reasoning with Probabilistic and Deterministic Graphical Models


Erscheinungsjahr 2013
ISBN: 978-1-62705-197-2
Verlag: Morgan & Claypool Publishers

Buch, Englisch, 191 Seiten, Paperback, Format (B × H): 195 mm x 236 mm, Gewicht: 359 g

Reihe: Synthesis Lectures on Artificial Intelligence and Machine Learning

ISBN: 978-1-62705-197-2
Verlag: Morgan & Claypool Publishers


Graphical models (e.g., Bayesian and constraint networks, influence diagrams, and Markov decision processes) have become a central paradigm for knowledge representation and reasoning in both artificial intelligence and computer science in general. These models are used to perform many reasoning tasks, such as scheduling, planning and learning, diagnosis and prediction, design, hardware and software verification, and bioinformatics. These problems can be stated as the formal tasks of constraint satisfaction and satisfiability, combinatorial optimization, and probabilistic inference. It is well known that the tasks are computationally hard, but research during the past three decades has yielded a variety of principles and techniques that significantly advanced the state of the art. In this book we provide comprehensive coverage of the primary exact algorithms for reasoning with such models. The main feature exploited by the algorithms is the model's graph. We present inference-based, message-passing schemes (e.g., variable-elimination) and search-based, conditioning schemes (e.g., cycle-cutset conditioning and AND/OR search). Each class possesses distinguished characteristics and in particular has different time vs. space behavior. We emphasize the dependence of both schemes on few graph parameters such as the treewidth, cycle-cutset, and (the pseudo-tree) height. We believe the principles outlined here would serve well in moving forward to approximation and anytime-based schemes. The target audience of this book is researchers and students in the artificial intelligence and machine learning area, and beyond.

Dechter Reasoning with Probabilistic and Deterministic Graphical Models jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


- Preface
- Introduction
- What are Graphical Models
- Inference: Bucket Elimination for Deterministic Networks
- Inference: Bucket Elimination for Probabilistic Networks
- Tree-Clustering Schemes
- AND/OR Search Spaces and Algorithms for Graphical Models
- Combining Search and Inference: Trading Space for Time
- Conclusion
- Bibliography
- Author's Biography



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.