E-Book, Englisch, 431 Seiten
Deepak Metal Nanoparticles and Clusters
1. Auflage 2018
ISBN: 978-3-319-68053-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
Advances in Synthesis, Properties and Applications
E-Book, Englisch, 431 Seiten
ISBN: 978-3-319-68053-8
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
?This book covers the continually expanding field of metal nanoparticles and clusters, in particular their size-dependent properties and quantum phenomena. The approaches to the organization of atoms that form clusters and nanoparticles have been advancing rapidly in recent times. These advancements are described through a combination of experimental and computational approaches and are covered in detail by the authors. Recent highlights of the various emerging properties and applications ranging from plasmonics to catalysis are showcased.
Dr. Francis Leonard Deepak is a Group Leader in the Department of Advanced Electron Microscopy, Imaging and Spectroscopy at the International Iberian Nanotechnology Laboratory, Braga, Portugal. He received his PhD at the Jawaharlal Nehru Center for Advanced Scientific Research in Bangalore, India. His broad area of research is focused on the use of advanced electron microscopic techniques for the study of materials/nanomaterials for various applications, as well as in the study of fundamental physical phenomena and dynamics at the nanoscale.
Autoren/Hrsg.
Weitere Infos & Material
1;Foreword;5
2;Preface;7
3;Contents;10
4;1 From Nano- to Angstrom Technology;12
4.1;1.1 Introduction: Industrial Revolutions, from Metals to Semiconductors and Backwards;12
4.2;1.2 The Basic Physics Behind Two Size Ranges: Scaling Laws of Surface Phenomena in NPs and Quantum Confinement in AQCs;14
4.2.1;1.2.1 Surface Phenomena in NPs;14
4.2.2;1.2.2 Strong Quantum Confinement in Small AQCs and Jellium Model Electronic Shells;16
4.2.2.1;1.2.2.1 Basic Spherical Symmetric Potential-Based Jellium Model;16
4.2.2.2;1.2.2.2 Extensions to Ligand-Protected Clusters;19
4.2.3;1.2.3 Competing Geometric Growth Stability and Electronic Shell Structures in Large AQCs;19
4.3;1.3 Physical Consequences of Size-Induced Transitions from Metal NPs to AQCs;21
4.3.1;1.3.1 Metal to Non-metal Transition in AQCs;22
4.3.2;1.3.2 Opening of HOMO-LUMO Gap-Dependent Optical Properties in NPs and AQCs;24
4.3.3;1.3.3 Towards Bulk Crystallinity Formation and Structure-Dependent Magnetic Properties;27
4.4;1.4 Catalytic Activity in Metal Clusters;28
4.5;1.5 Relevant Characterization Techniques for AQCs;33
4.5.1;1.5.1 HRSTEM;33
4.5.2;1.5.2 AFM/STM;34
4.5.3;1.5.3 Mass Spectrometry;35
4.5.4;1.5.4 Fluorescence;37
4.6;1.6 Voltammetry;37
4.7;References;37
5;2 Advances in Synthesis of Metal Nanocrystals;42
5.1;2.1 Introduction;42
5.1.1;2.1.1 Nanocrystals in Liquids;43
5.2;2.2 Synthesis of Nanocrystals in the Aqueous Phase;44
5.2.1;2.2.1 Sodium Citrate and Related Reducing Agents;44
5.2.2;2.2.2 Borohydride Reduction;45
5.2.3;2.2.3 Photochemical Synthesis;45
5.2.4;2.2.4 Tetrakis(hydroxymethyl)phosphonium Chloride;46
5.2.4.1;2.2.4.1 Role of THPC in Reductions;47
5.3;2.3 Metal Nanocrystals in Nonaqueous Medium;49
5.3.1;2.3.1 Brust Method;50
5.3.2;2.3.2 Thermolysis Routes;50
5.3.2.1;2.3.2.1 Bimetallic and Other Systems;51
5.4;2.4 Digestive Ripening;52
5.5;2.5 Nanostructures with Structural Anisotropy and High-Energy Facets;54
5.5.1;2.5.1 Silver Nanowires Synthesised by the Polyol Process;56
5.6;2.6 Conclusions;59
5.7;References;59
6;3 Spectroscopic and Computational Studies on Ligand-Capped Metal Nanoparticles and Clusters;66
6.1;3.1 Introduction;66
6.2;3.2 Metal Nanoparticles;67
6.2.1;3.2.1 SERS Effect;67
6.2.2;3.2.2 SERS/DFT Investigation of Ligand-Capped Silver, Gold, and Copper Nanoparticles;69
6.2.3;3.2.3 Solvation and Chemisorption of Ligand Molecules in Metal Colloidal Suspensions;82
6.2.4;3.2.4 Concluding Remarks;84
6.2.5;3.2.5 Computational Details;86
6.3;3.3 Metal Clusters;87
6.3.1;3.3.1 Ligand-Capped Nanoclusters;87
6.3.2;3.3.2 Relation Between Structures and Optical Properties in Metal Nanoclusters;88
6.3.3;3.3.3 Computational Details;94
6.4;3.4 Conclusions;95
6.5;References;95
7;4 Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications;99
7.1;4.1 Introduction;99
7.2;4.2 Brief Introduction on Raman Scattering;102
7.3;4.3 Enhancement Mechanisms in SERS;104
7.3.1;4.3.1 Electromagnetic Enhancement;104
7.3.1.1;4.3.1.1 Local Field Enhancement;105
7.3.1.2;4.3.1.2 The Radiation Enhancement;107
7.3.1.3;4.3.1.3 Similarities Between Local Field and Radiation Enhancement;108
7.3.1.4;4.3.1.4 Derivation of SERS Enhancement Factor for a Single Molecule;111
7.3.1.5;4.3.1.5 "026A30C E"026A30C 4 Approximation and Its Zero Stokes Shift Limit;112
7.3.2;4.3.2 Chemical Enhancement;114
7.3.2.1;4.3.2.1 Contribution of the Plasmonic, Charge-Transfer, and Molecular Resonances;116
7.3.2.2;4.3.2.2 The Surface Selection Rules;117
7.3.2.3;4.3.2.3 Comparison with the Electromagnetic Enhancement;119
7.4;4.4 Distance Dependence;119
7.5;4.5 Definition and Properties of Hot Spots;122
7.5.1;4.5.1 Definition;122
7.5.2;4.5.2 Extinction and Enhancement as a Function of the Gap Size;122
7.5.3;4.5.3 SERS Enhancement Distribution on a Substrate;124
7.6;4.6 Near- Versus Far-Field Properties;125
7.7;4.7 Materials for SERS;128
7.8;4.8 Fabrication of SERS Substrates;132
7.8.1;4.8.1 Bottom-Up Methods;133
7.8.1.1;4.8.1.1 Electrochemical Roughening;133
7.8.1.2;4.8.1.2 Assembly of Nanostructures on a Surface;134
7.8.1.3;4.8.1.3 Laser Direct Writing;136
7.8.2;4.8.2 Template Methods;136
7.8.2.1;4.8.2.1 Anodic Aluminum Oxide Template;136
7.8.2.2;4.8.2.2 Nanosphere Lithography;137
7.8.3;4.8.3 Top-Down Methods;139
7.8.3.1;4.8.3.1 Electron Beam Lithography;139
7.8.3.2;4.8.3.2 Extreme Ultraviolet Interference Lithography;141
7.8.3.3;4.8.3.3 Soft Lithography;142
7.9;4.9 Applications;144
7.9.1;4.9.1 Chemical Warfare Agents and Explosives;146
7.9.2;4.9.2 Environmental Analysis of Pollutants;147
7.9.3;4.9.3 Art Preservation;148
7.9.4;4.9.4 Food Contaminants;148
7.9.5;4.9.5 Biomolecules;151
7.9.5.1;4.9.5.1 Oligonucleotides;151
7.9.5.2;4.9.5.2 Proteins;152
7.9.5.3;4.9.5.3 Viruses and Bacteria;153
7.9.6;4.9.6 Medical Applications;154
7.9.7;4.9.7 Therapeutic Drugs;155
7.9.8;4.9.8 Forensic Science and Illicit Drugs;155
7.9.9;4.9.9 Novel Applications;157
7.10;4.10 Conclusions;158
7.11;References;159
8;5 Model Nanoparticles in Catalysis;175
8.1;5.1 Introduction;175
8.2;5.2 Morphology-Controlled Nanoparticles and Its Applications;177
8.3;5.3 Surface Structure;177
8.3.1;5.3.1 Low-Index Faceted Nanoparticle System;178
8.3.2;5.3.2 High-Index Faceted Nanoparticles;179
8.4;5.4 Determination of High-Index Facets;180
8.4.1;5.4.1 Microfacet Notation for Denoting Stepped Surfaces;180
8.4.2;5.4.2 Projection Angle Method for the Identification of High-Index Facets;180
8.5;5.5 Different Types of High-Index Faceted Nanostructures;180
8.5.1;5.5.1 "4266308 hk0"5267309 Facets;180
8.5.2;5.5.2 "4266308 hhl"5267309 Facets;183
8.5.3;5.5.3 "4266308 hkk"5267309 Facets;183
8.5.4;5.5.4 "4266308 hkl"5267309 Facets;183
8.6;5.6 Morphology-Dependent Geometric and Electronic Factors of a Nanoparticle Surface;184
8.6.1;5.6.1 Crystallographic Surface-Dependent d-Band Center and Its Correlation with Surface Adsorption Energy;185
8.7;5.7 Mechanism of Growth of Morphology-Controlled Nanoparticles;185
8.7.1;5.7.1 Nucleation and Seed Formation;185
8.8;5.8 Shape-Controlled Nanoparticles for Catalytic Applications;187
8.8.1;5.8.1 Oxidation Reactions;187
8.8.2;5.8.2 Hydrogenation Reactions;189
8.8.3;5.8.3 Coupling Reactions;193
8.9;5.9 Bimetallic Systems and Their Development as Catalytic Materials;194
8.9.1;5.9.1 Bimetallic Synergism: Geometric and Electronic Effects;195
8.9.2;5.9.2 Designed Architectures and Synthesis of Bimetallic Nanoparticles;196
8.9.3;5.9.3 Catalytic Applications of Bimetallic Nanoparticles;199
8.10;5.10 Summary and Future Outlook;206
8.11;References;206
9;6 Catalytic Efficiency in Metallic Nanoparticles: A Computational Approach;210
9.1;6.1 Introduction;210
9.2;6.2 Ab Initio Calculations;212
9.2.1;6.2.1 Electrocatalysis;212
9.2.1.1;6.2.1.1 Description of Different Electrochemical Reactions;213
9.2.2;6.2.2 Future Directions;213
9.3;6.3 Monte Carlo;214
9.3.1;6.3.1 KMC Approach in Catalysis;215
9.3.1.1;6.3.1.1 CO Oxidation;215
9.3.1.2;6.3.1.2 NO Reduction and Oxidation;216
9.3.1.3;6.3.1.3 Ethylene Hydrogenation;216
9.3.2;6.3.2 KMC Simulations for Catalysis in Nanoparticles;217
9.3.3;6.3.3 Future Directions;217
9.4;6.4 Molecular Dynamics;217
9.4.1;6.4.1 Metallic Nanoparticles for Catalytic Applications;218
9.4.2;6.4.2 Nucleation Process of Catalytic Nanoparticles;219
9.4.2.1;6.4.2.1 Classification of Surface Defects;220
9.4.2.2;6.4.2.2 Catalytic Activity in Pt Nanoparticles;221
9.5;6.5 Conclusions;223
9.6;References;224
10;7 Advanced Electron Microscopy Techniques Toward the Understanding of Metal Nanoparticles and Clusters;227
10.1;7.1 Introduction;227
10.2;7.2 Characterization Techniques;230
10.2.1;7.2.1 Transmission Electron Microscopy (TEM);230
10.2.1.1;7.2.1.1 Diffraction;233
10.2.1.2;7.2.1.2 Image;234
10.2.2;7.2.2 Scanning Transmission Electron Microscopy (STEM);237
10.2.3;7.2.3 Aberration-Corrected TEM/STEM;239
10.2.4;7.2.4 Spectroscopic Techniques;240
10.2.4.1;7.2.4.1 Energy-Dispersive X-Ray Spectroscopy (EDX/XEDS);240
10.2.4.2;7.2.4.2 Electron Energy Loss Spectroscopy (EELS);241
10.2.5;7.2.5 Energy-Filtered Transmission Electron Microscopy (EFTEM);242
10.2.6;7.2.6 Electron Tomography;245
10.2.7;7.2.7 Holography;246
10.3;7.3 Monometallic Nanoparticles: Shape, Size, and Morphology Control;248
10.3.1;7.3.1 TEM/STEM Characterization of Monometallic Nanoparticles;249
10.3.2;7.3.2 TEM/STEM Characterization of Supported Metal Nanoparticles;254
10.4;7.4 TEM/STEM Characterization of Bimetallic Nanoparticles;259
10.5;7.5 TEM/STEM Characterization of Trimetallic Nanoparticles;264
10.6;7.6 TEM/STEM Characterization of Clusters;265
10.6.1;7.6.1 Atomic Clusters;267
10.6.1.1;7.6.1.1 STEM Characterization of Metal Clusters;268
10.6.1.2;7.6.1.2 The Interpretation of Three-Dimensional Structure of Metal Clusters;271
10.6.2;7.6.2 Protected Clusters;271
10.6.2.1;7.6.2.1 Metal Clusters Stabilized with Capping Agents;272
10.6.2.2;7.6.2.2 Metal Clusters Confined Within Nanopores;274
10.6.3;7.6.3 Supported Metal Clusters;275
10.6.3.1;7.6.3.1 Oxide-Supported Metal Clusters;275
10.6.3.2;7.6.3.2 Metal Clusters Supported on Carbon;277
10.6.3.3;7.6.3.3 Supported Bimetallic Clusters;277
10.7;7.7 In Situ Electron Microscopy;278
10.8;7.8 Conclusions;284
10.9;References;285
11;8 Simulation of Metal Clusters and Nanostructures;296
11.1;8.1 Introduction;296
11.2;8.2 Common Potentials for Metallic Systems;297
11.3;8.3 Global Search of Minima in Metallic Clusters;299
11.4;8.4 Global Search of Minima in Bimetallic Clusters;302
11.5;8.5 Melting and Sintering of Metal Nanoparticles;303
11.6;8.6 Phase Diagrams of Metal Nanoparticles;313
11.7;8.7 Phase Diagrams of Bimetallic Nanoparticles;314
11.8;8.8 Supported and Confined Nanoparticles;315
11.9;8.9 Core-Shell Nanoparticles;319
11.10;8.10 STEM Simulation of Clusters and Particles;321
11.11;8.11 Tensile Strain in Metal Nanowires;325
11.12;8.12 Conclusions;329
11.13;References;329
12;9 Gold and Silver Fluorescent Nanomaterials as Emerging Probes for Toxic and Biochemical Sensors;334
12.1;Abbreviations;334
12.2;9.1 Introduction;336
12.3;9.2 Synthetic Methods of Gold and Silver Nanoclusters;339
12.4;9.3 Bio- and Toxic Chemical Sensing by Luminescent Au/Ag Nanomaterials;339
12.4.1;9.3.1 Detection of Cations and Anions;340
12.4.2;9.3.2 Detection of Biomolecules;354
12.4.2.1;9.3.2.1 Nonenzymatic Detection of Biomolecules;358
12.4.2.2;9.3.2.2 Enzymatic Detection of Biomolecules;362
12.4.3;9.3.3 Detection of Drugs and Small Molecules;369
12.4.4;9.3.4 Detection of Toxic Chemicals;373
12.4.5;9.3.5 Detection of Bacteria;375
12.5;9.4 Conclusions and Trends;382
12.6;References;383
13;10 NIR Light-Sensitive Plasmonic Gold Nanomaterials for Cancer Photothermal and Chemotherapy Applications;391
13.1;Abbreviations;391
13.2;10.1 Introduction;392
13.3;10.2 NIR Light-Sensitive Plasmonic Gold Nanomaterial-Based Cancer Therapy;394
13.3.1;10.2.1 Au Nanoshells for PTT and Chemotherapy Applications;395
13.3.2;10.2.2 Gold Nanorods for PTT and Chemotherapy Applications;401
13.3.3;10.2.3 Gold Nanocages for PTT and Chemotherapy Applications;406
13.3.4;10.2.4 Hollow Gold Nanospheres for PTT and Chemotherapy Applications;409
13.3.5;10.2.5 Gold Nanostars for PTT and Chemotherapy Applications;410
13.3.6;10.2.6 Gold Nanocluster for Bioimaging and Drug Delivery Applications;413
13.4;10.3 Conclusions and Trends;417
13.5;References;417
14;Index;422




