Dehling / Mikosch / Sörensen | Empirical Process Techniques for Dependent Data | Buch | 978-0-8176-4201-3 | sack.de

Buch, Englisch, 383 Seiten, Format (B × H): 179 mm x 258 mm, Gewicht: 903 g

Dehling / Mikosch / Sörensen

Empirical Process Techniques for Dependent Data


2002. Auflage 2002
ISBN: 978-0-8176-4201-3
Verlag: Birkhauser Boston

Buch, Englisch, 383 Seiten, Format (B × H): 179 mm x 258 mm, Gewicht: 903 g

ISBN: 978-0-8176-4201-3
Verlag: Birkhauser Boston


Empirical process techniques for independent data have been used

for many years in statistics and probability theory. These techniques

have proved very useful for studying asymptotic properties of

parametric as well as non-parametric statistical procedures. Recently,

the need to model the dependence structure in data sets from many

different subject areas such as finance, insurance, and

telecommunications has led to new developments concerning the

empirical distribution function and the empirical process for

dependent, mostly stationary sequences. This work gives an

introduction to this new theory of empirical process techniques, which

has so far been scattered in the statistical and probabilistic

literature, and surveys the most recent developments in various

related fields.

Key features: A thorough and comprehensive introduction to the

existing theory of empirical process techniques for dependent data *

Accessible surveys by leading experts of the most recent developments

in various related fields * Examines empirical process techniques for

dependent data, useful for studying parametric and non-parametric

statistical procedures * Comprehensive bibliographies * An overview of

applications in various fields related to empirical processes: e.g.,

spectral analysis of time-series, the bootstrap for stationary

sequences, extreme value theory, and the empirical process for mixing

dependent observations, including the case of strong dependence.

To date this book is the only comprehensive treatment of the topic

in book literature. It is an ideal introductory text that will serve

as a reference or resource for classroom use in the areas of

statistics, time-series analysis, extreme value theory, point process

theory, and applied probability theory. Contributors: P. Ango

Nze, M.A. Arcones, I. Berkes, R. Dahlhaus, J. Dedecker, H.G. Dehling,

Dehling / Mikosch / Sörensen Empirical Process Techniques for Dependent Data jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


I. A Tutorial on Empirical Process Techniques for Dependent Data.- Empirical Process Techniques for Dependent Data.- II. Techniques for the Empirical Process of Stationary Sequences.- Weak Dependence: Models and Applications.- Maximal Inequalities and Empirical Central Limit Theorems.- On Hoeffding’s Inequality for Dependent Random Variables.- On the Coupling of Dependent Random Variables and Applications.- Empirical Processes of Residuals.- III. The Empirical Process of Long Range Dependent Processes.- Asymptotic Expansion of the Empirical Process of Long Memory Moving Averages.- The Reduction Principle for the Empirical Process of a Long Memory Linear Process.- Distributional Limit Theorems for Empirical Processes Generated by Functions of a Stationary Gaussian Process.- IV. Empirical Spectral Process Techniques.- Empirical Spectral Processes and Nonparametric Maximum Likelihood Estimation for Time Series.- Empirical Processes Techniques for the Spectral Estimation of Fractional Processes.- V. The Tail Empirical Process in Extreme Value Theory.- Tail Empirical Processes Under Mixing Conditions.- VI. Bootstrap Techniques.- On the Bootstrap and Empirical Processes for Dependent Sequences.- Frequency Domain Bootstrap for Time Series.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.