Del Moral | Mean Field Simulation for Monte Carlo Integration | Buch | 978-1-138-19873-9 | sack.de

Buch, Englisch, 626 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 936 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

Del Moral

Mean Field Simulation for Monte Carlo Integration


1. Auflage 2016
ISBN: 978-1-138-19873-9
Verlag: Chapman and Hall/CRC

Buch, Englisch, 626 Seiten, Format (B × H): 156 mm x 234 mm, Gewicht: 936 g

Reihe: Chapman & Hall/CRC Monographs on Statistics and Applied Probability

ISBN: 978-1-138-19873-9
Verlag: Chapman and Hall/CRC


In the last three decades, there has been a dramatic increase in the use of interacting particle methods as a powerful tool in real-world applications of Monte Carlo simulation in computational physics, population biology, computer sciences, and statistical machine learning. Ideally suited to parallel and distributed computation, these advanced particle algorithms include nonlinear interacting jump diffusions; quantum, diffusion, and resampled Monte Carlo methods; Feynman-Kac particle models; genetic and evolutionary algorithms; sequential Monte Carlo methods; adaptive and interacting Markov chain Monte Carlo models; bootstrapping methods; ensemble Kalman filters; and interacting particle filters.

Mean Field Simulation for Monte Carlo Integration presents the first comprehensive and modern mathematical treatment of mean field particle simulation models and interdisciplinary research topics, including interacting jumps and McKean-Vlasov processes, sequential Monte Carlo methodologies, genetic particle algorithms, genealogical tree-based algorithms, and quantum and diffusion Monte Carlo methods.

Along with covering refined convergence analysis on nonlinear Markov chain models, the author discusses applications related to parameter estimation in hidden Markov chain models, stochastic optimization, nonlinear filtering and multiple target tracking, stochastic optimization, calibration and uncertainty propagations in numerical codes, rare event simulation, financial mathematics, and free energy and quasi-invariant measures arising in computational physics and population biology.

This book shows how mean field particle simulation has revolutionized the field of Monte Carlo integration and stochastic algorithms. It will help theoretical probability researchers, applied statisticians, biologists, statistical physicists, and computer scientists work better across their own disciplinary boundaries.

Del Moral Mean Field Simulation for Monte Carlo Integration jetzt bestellen!

Zielgruppe


Researchers, practitioners, and graduate students in statistics and mathematics.


Autoren/Hrsg.


Weitere Infos & Material


Monte Carlo and Mean Field Models. Theory and Applications. Feynman-Kac Models: Discrete Time Feynman-Kac Models. Four Equivalent Particle Interpretations. Continuous Time Feynman-Kac Models. Nonlinear Evolutions of Intensity Measures. Application Domains: Particle Absorption Models. Signal Processing and Control Systems. Theoretical Aspects: Mean Field Feynman-Kac Models. A General Class of Mean Field Models. Empirical Processes. Feynman-Kac Semigroups. Intensity Measure Semigroups. Particle Density Profiles. Genealogical Tree Models. Particle Normalizing Constants. Backward Particle Markov Models. Bibliography. Index.


Pierre Del Moral is a professor in the School of Mathematics and Statistics at the University of New South Wales in Sydney, Australia.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.