Delale | Bubble Dynamics and Shock Waves | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 8, 394 Seiten

Reihe: Shock Wave Science and Technology Reference Library

Delale Bubble Dynamics and Shock Waves


1. Auflage 2012
ISBN: 978-3-642-34297-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 8, 394 Seiten

Reihe: Shock Wave Science and Technology Reference Library

ISBN: 978-3-642-34297-4
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book explores the interplay of bubble dynamics and shock waves, covering shock wave emission by laser generated bubbles, pulsating bubbles near boundaries, interaction of shock waves with bubble clouds, applications in shock wave lithotripsy, and more.

Delale Bubble Dynamics and Shock Waves jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;9
3;Part I: Bubble Dynamics and Shock Wave
Emission;11
3.1;Shock
Wave Interaction with Single Bubbles and Bubble Clouds;12
3.1.1;Introduction;12
3.1.2;Experiments;14
3.1.2.1;Early Experiments;14
3.1.2.2;Light Emission;15
3.1.2.3;Jetting from Stable Gas Bubbles;15
3.1.3;Simulations of a Shock Wave and a Gas Bubble Interaction;16
3.1.4;Injection into Boundaries;20
3.1.5;Jetting from Liquid Menisci;21
3.1.6;Bubble-Bubble Interaction;22
3.1.6.1;Gas-Bubble Cavitation Interaction;23
3.1.6.2;Cavitation Bubble - Cavitation Bubble Interaction;24
3.1.7;Cavitation Bubble-Shockwave Interaction;26
3.1.8;Molecular Dynamics Simulations;33
3.1.9;Concluding Remarks;36
3.1.10;References;36
3.2;Pulsating Bubbles Near Boundaries;41
3.2.1;Physical and Mathematical Modelling;41
3.2.2;Experimental Studies on Bubbles Near Boundaries;43
3.2.3;Fundamental Physics;44
3.2.3.1;Dimensionless Parameters;44
3.2.3.2;Equations of Motion;46
3.2.3.3;Global Properties: Kelvin Impulse;47
3.2.3.4;Global Properties: Kinetic and Potential Energy;48
3.2.4;Incompressible Bubble Dynamics;51
3.2.4.1;Introduction;51
3.2.4.2;Recent Developments with the Boundary Integral Method: Incompressible Bubble Dynamics;52
3.2.4.3;Toroidal Bubbles;57
3.2.4.4;Numerical Results;58
3.2.4.5;Comparison with Rigid Boundary Results;59
3.2.5;Further Developments in the Boundary Integral Method: Weakly Compressible Bubble Dynamics;60
3.2.5.1;Introduction;60
3.2.5.2;Mathematical Formulation;62
3.2.5.3;Matched Asymptotic Expansion;63
3.2.5.4;The Theoretical Basis for the Computational Model: Second Order Theory;66
3.2.5.5;Comparisons with Previous Studies;67
3.2.5.6;Analysis of Bubble Behaviour When Subjected to a Weak Acoustic Wave;68
3.2.5.7;Bubble Behaviour When Subjected to a Strong Acoustic Wave;69
3.2.6;Summary and Conclusions;69
3.2.7;References;71
3.3;ShockWave Emission by Laser Generated Bubbles;74
3.3.1;Introduction;75
3.3.2;Laser Induced Breakdown in Liquids;80
3.3.3;Shock Wave Emission at Breakdown;82
3.3.4;Bubble Formation and Subsequent Dynamics;89
3.3.5;Shock Wave Emission at Bubble Collapse;93
3.3.6;Applications and Future Perspectives;100
3.3.7;References;104
4;Part II: Shock Wave Propagation in Bubbly
Liquids;111
4.1;Nonlinear Wave Propagation in Bubbly
Liquids;112
4.1.1;Introduction;112
4.1.2;Formulation of the Model;114
4.1.2.1;Average Description of Waves in Bubbly Liquids;114
4.1.2.2;Forces Exerting on Bubbles;115
4.1.2.3;Dissipation Effects on Wave Propagation;116
4.1.2.4;Linear Dispersion Relation;116
4.1.3;Plane Waves in Uniform Bubbly Liquids;117
4.1.3.1;Governing Equations of Two-Fluid Model;118
4.1.3.2;Method of Multiple Scales;120
4.1.4;Korteweg–de Vries–Burgers Equation;123
4.1.4.1;Parameter Scaling;123
4.1.4.2;Linear Propagation in a Near Field;124
4.1.4.3;Nonlinear Propagation in a Far Field;126
4.1.5;Nonlinear Schr¨odinger Equation;128
4.1.5.1;Parameter Scaling;129
4.1.5.2;Quasi-Monochromatic Wave Train;129
4.1.5.3;Slow Variation of Wave Train;132
4.1.5.4;NLS Equation and Nonlinear Propagation of Envelope Wave;133
4.1.6;Sound Beam in Nonuniform Bubbly Liquid;136
4.1.7;Khokhlov–Zabolotskaya–Kuznetsov Equation;137
4.1.7.1;Parameter Scaling;137
4.1.7.2;Method of Multiple Scales;137
4.1.7.3;Nonuniform Bubble Distribution;138
4.1.7.4;Generalized KZK Equation;139
4.1.8;Comparison between Mixture and Two-Fluid Models;140
4.1.8.1;Basic Equations of Mixture Model;140
4.1.8.2;KdVB Equation;140
4.1.8.3;NLS Equation;142
4.1.9;Conclusion;142
4.1.10;References;143
4.2;Shock Propagation in Polydisperse Bubbly Liquids;146
4.2.1;Introduction;146
4.2.2;Modelling of Continuum Bubbly Flows;148
4.2.2.1;Mixture-Averaged Conservation Laws;148
4.2.2.2;Single-Bubble-Dynamic Equations;150
4.2.2.3;Acoustics of Polydisperse Bubbly Liquids;152
4.2.3;Simulation of Averaged Shock Dynamics;157
4.2.3.1;Numerical Method;157
4.2.3.2;Steady Shock Relations;158
4.2.3.3;One-Dimensional Shock Propagation;161
4.2.4;Shocks in a Mixture-Filled Deformable Tube;165
4.2.4.1;Quasi-One-Dimensional Conservation Laws;165
4.2.4.2;FSI Shock Theory;166
4.2.4.3;Water-Hammer Experiments;168
4.2.5;Concluding Remarks;174
4.2.6;References;175
4.3;Direct Numerical Simulation of Shock Propagation in Bubbly Liquids;181
4.3.1;Introduction;181
4.3.2;Direct Numerical Simulations of Bubbly Flows;183
4.3.3;Numerical Method;187
4.3.4;Simulations of Single Bubbles;193
4.3.5;Simulations of 1D Shocks;194
4.3.6;Multidimensional Systems;201
4.3.7;Extensions;201
4.3.8;Conclusions;202
4.3.9;References;203
5;Part III: Shocks in Cavitating Flows;206
5.1;Shocks in Quasi-One-Dimensional Bubbly Cavitating Nozzle Flows;207
5.1.1;Introduction;207
5.1.2;Model Equations for Quasi-One-Dimensional Bubbly Cavitating Nozzle Flows;209
5.1.2.1;Evolution Equations for the Flow Speed and Bubble Radius;212
5.1.2.2;The Pressure-Void Fraction-Dilation Relation;214
5.1.3;Stationary and Propagating Shock Waves in Quasi-One-Dimensional Bubbly Cavitating Nozzle Flows;215
5.1.3.1;Steady-State Solutions and Stationary Shocks;216
5.1.3.2;Temporal Stability of Steady-State Shock Solutions;217
5.1.3.3;Unsteady Solutions and Propagating Shock Waves;220
5.1.4;Conclusions and Future Perspectives;228
5.1.5;References;235
5.2;Shocks in Cavitating Flows;237
5.2.1;Modeling and Simulation of Shocks in Compressible Two-Phase Flows;237
5.2.2;Numerical Methods for Compressible Two-Phase Flows;239
5.2.2.1;Two-Fluid Model with Sharp Interface Treatment;239
5.2.2.2;Single-Fluid Model Using Local Thermodynamic Equilibrium Assumptions;241
5.2.2.3;Investigations Using the Two-Fluid Model;242
5.2.2.4;Investigations Using the Single-Fluid Model;247
5.2.3;Summary and Future Perspective;256
5.2.4;References;257
6;Part IV: Applications in Medical and Earth
Sciences;259
6.1;Encapsulated Bubble Dynamics in Imaging and Therapy;260
6.1.1;Introduction;260
6.1.2;Shell Models for Microbubble Contrast Agents;262
6.1.3;Effect of a Boundary on the Dynamics of Contrast Microbubbles;269
6.1.4;Contrast Imaging Methods;275
6.1.4.1;Single-Pulse Excitation Strategies;277
6.1.4.2;Multi-pulse Excitation Strategies;279
6.1.5;Sonoporation and Drug Delivery;282
6.1.5.1;Mechanisms of Drug Delivery;282
6.1.5.2;Drug Delivery Applications;284
6.1.6;References;284
6.2;Shock
Wave Lithotripsy;291
6.2.1;Introduction;291
6.2.2;Different Types of Shock Wave Lithotripters;292
6.2.2.1;Technologies for Shock Wave Generation and Focusing;293
6.2.2.2;Pressure Waveforms Produced by Different Types of
Lithotripters;294
6.2.2.3;Comparison of Different Types of Lithotripters;297
6.2.3;Kidney Stones and Their Physical Properties;298
6.2.4;Shock Wave-Stone Interaction;300
6.2.4.1;Fundamental Acoustics of Wave Reflection and Refraction at
a Fluid-Solid Interface;300
6.2.4.2;Transient Shock Wave-Stone Interaction;302
6.2.4.3;Basic Concepts of Fracture Mechanics;306
6.2.4.4;Mechanisms of Stone Comminution in SWL;309
6.2.5;Mechanisms of Tissue Injury;321
6.2.6;Emerging Technologies in SWL;322
6.2.6.1;Broad Focal Width and Low Peak Pressure Lithoripters;322
6.2.6.2;New Acoustic Lens for Electromagnetic Shock Wave
Lithotripters;322
6.2.6.3;Other Promising Technologies;325
6.2.7;Summary and Future Perspectives;327
6.2.7.1;Summary;327
6.2.7.2;Future Perspectives and iLithotripter;328
6.2.8;References;329
6.3;Sterilization of Ships’ Ballast Water;339
6.3.1;Introduction;339
6.3.2;Marine Bacterial Cells Exposed to High-Pressure Shock Waves;342
6.3.2.1;Experimental Method;342
6.3.2.2;Numerical Prediction of Shock Wave Propagation in Target
Container;344
6.3.2.3;Effects of High-Pressure Shock Waves on Marine Bacterial
Cells;347
6.3.3;Inactivation of Marine Bacterial Cells Using Microbubble Dynamics;351
6.3.3.1;Characteristics of Microbubbles and Concept of Shock Wave–Microbubble Sterilization;351
6.3.3.2;Observation of Shock Wave Interaction with Microbubbles in
a Confined Chamber;353
6.3.3.3;Inactivation of Marine Bacterial Cells in Water Circulation Channel;356
6.3.4;Future Perspectives;359
6.3.5;References;360
6.4;Bubbly Magma State Dynamics at Explosive Character of Decompression;363
6.4.1;Introduction;364
6.4.2;Common Sings: Pre-eruption State, Wave Character of a Decompression and Bubbly Structure of Flow;364
6.4.3;Formation of Nucleation Zone and Dynamics of Initial Magma State;372
6.4.3.1;Dynamics of Saturation of the Cavitation Zone with Nuclei;373
6.4.3.2;Cavitation Bubble with Constant Gas Mass;374
6.4.4;Crystallites Role in a Magma State;380
6.4.4.1;Gas Phase Nucleation and Crystallization in Magma Flow;380
6.4.4.2;Homogeneous-Heterogeneous Nucleation: Features of Wave Field Structure and of Some Characteristics of the Magma State;382
6.4.4.3;Crystal Clusters in the Cavitating Magma
(Experimental Modelling);385
6.4.5;Conclusions;388
6.4.6;References;390
7;Author Index;393



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.