E-Book, Englisch, 437 Seiten
Dobretsov / Kolchanov / Rozanov Biosphere Origin and Evolution
1. Auflage 2007
ISBN: 978-0-387-68656-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 437 Seiten
ISBN: 978-0-387-68656-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
This monograph contains articles based on the oral presentations given at the International Workshop on the Biosphere Origin and Evolution (BOE 2005) held in Novosibirsk, Russia, June 26-29, 2005. The organizers of the event were the Scientific Programme of the Presidium of the Russian Academy of Sciences, which involves 50 institutes of the Russian Academy of Sciences.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;10
3;Contributors;14
4;Part I Problems of Biosphere Evolution and Origin of Life;20
4.1;On Important Stages of Geosphere and Biosphere Evolution;21
4.1.1;References;38
4.2;Microbial Biosphere;42
4.2.1;Introduction;43
4.2.2;Limits for Actualistic Principle;45
4.2.3;Relict Microbial Communities;46
4.2.3.1;Formation of Landscape in Prokaryotic Biosphere;49
4.2.3.2;Trophic Structure of Cyano-bacterial Community;54
4.2.4;References;57
5;Part II Prebiological Stages of Evolution and RNA World on the Earth and in the Space;60
5.1;Astrocatalysis Hypothesis for Origin of Life Problem;61
5.1.1;Evolution of the Surroundings and the Life Origin;61
5.1.2;Astrophysics and Planetology;63
5.1.3;Astrocatalysis, "RNA World" and Life Origin;64
5.1.4;Conclusions;68
5.1.5;References;69
5.2;Comets, Carbonaceous Meteorites and the Origin of the Biosphere;70
5.2.1;Introduction;71
5.2.2;Comets, Meteorites, and the Origin and Distribution of Life;73
5.2.3;Microfossils of Cyanobacteria in the Orgueil and Murchison Meteorites;75
5.2.3.1;Morphotypes of Cyanobacteria in Carbonaceous Meteorites;76
5.2.4;Conclusions;79
5.2.5;References;80
5.3;Hierarchical Scale-Free Representation of Biological Realm-Its Origin and Evolution;84
5.3.1;Introduction;84
5.3.2;Identification of Referents;86
5.3.2.1;Defining Sets of Referents;87
5.3.3;Referents and Hierarchy of Complexity;90
5.3.3.1;From a Linnaean Hierarchy to the Hierarchy of Complexity;90
5.3.3.2;Two Directions in the Architecture of Complexity;92
5.3.3.3;Transition Thresholds and the Irreversibility of Transition;94
5.3.4;Formalization of the Referent Representation;95
5.3.4.1;Space of the Referent Signs;95
5.3.4.2;Evolutionary Equation;96
5.3.4.3;Growing of the Referent Hierarchy;98
5.3.5;Conclusions;100
5.3.6;References;101
5.4;The Prebiotic Phase of the Origin of Life as Seen by a Physical Chemist;104
5.4.1;References;116
5.5;Prebiotic Carbohydrates and Their Derivates;117
5.5.1;Introduction;117
5.5.2;The Formose Reaction;118
5.5.3;Prebiotic Synthesis of Lower (C2–C3) Carbohydrates;120
5.5.4;Selective Prebiotic Synthesis of Carbohydrates;122
5.5.4.1;Carbohydrates Synthesis Catalyzed by Natural Minerals;123
5.5.4.2;Selective Synthesis of Carbohydrates Phosphates;123
5.5.4.3;Co-condensation of Lower Carbohydrates and Formladehyde;124
5.5.4.4;Putative Prebiotic Synthesis of Carbohydrates fromForm aldehyde;125
5.5.5;Important Prebiotic Organics from Carbohydrates;126
5.5.5.1;Synthesis of Heterocycles from Carbohydrates and Ammonia;126
5.5.5.2;A ‘‘Sugar Model’’ by A.L. Weber;126
5.5.5.3;Synthesis of Cytidine Ribonucleotides on Sugar Phosphate;128
5.5.6;Conclusions;129
5.5.7;References;130
5.6;Theoretical and Computer Modeling of Evolution of Autocatalytic Systems in a Flow Reactor;132
5.6.1;Introduction;132
5.6.1.1;The ‘‘Only’’ Statements;132
5.6.1.2;On the Main Properties of Living Beings;133
5.6.1.3;Key Problem Is Due to Attempts to Explain the Exact Origin of Earth’s Life Form;133
5.6.1.4;Presuppositions Capable of Eliminating the Problem;134
5.6.1.5;On the Nature of the Predecessor;134
5.6.2;Description of Computer Model and Conditions of Real Experiment;137
5.6.3;Results of the Computer Simulation and Discussion;139
5.6.4;Conclusions;140
5.6.5;References;141
5.7;RNA World: First Steps Towards Functional Molecules;143
5.7.1;First RNA Monomers: Puzzle of Isomers;143
5.7.2;Prebiotic Synthesis of RNA Oligomers;145
5.7.3;Emergence of Catalytic RNAs;147
5.7.4;RNA Recombination: Elongation and Diversity;148
5.7.5;Concluding Remarks;152
5.7.6;References;152
5.8;Trans Hammerhead Ribozyme: Ligation vs. Cleavage;155
5.8.1;Introduction;155
5.8.2;RNA Ligation by Trans Hammerhead Ribozymes;157
5.8.3;Binary Hammerhead Ribozymes;160
5.8.4;Conclusion;164
5.8.5;References;165
5.9;Paradoxical Bistate Status of a Prebiotic Microsystem: Universal Predecessor of Life;168
5.9.1;Introduction;168
5.9.2;Fundamental Properties of Biological Systems;169
5.9.3;Stabilized Bifurcation as a Starting Point of Life;170
5.9.3.1;Main Properties of a Chemical System Close to the Bifurcation Point;171
5.9.3.2;The Corresponding Characteristics of a Living Cell;172
5.9.4;Bistate System as Prototype of a Living Organism: Theoretical Substantiation;173
5.9.5;Conclusion;176
5.9.6;References;176
6;Part III Archaen–Proterozoic Ecosystems: Their Interaction and Contemporary Analogues;178
6.1;The Ancient Anoxic Biosphere Was Not As We Know It;179
6.1.1;Introduction;179
6.1.2;Ccarb of Early Precambrian Carbonates;181
6.1.3;Diagenetic Concretions in the Early Precambrian;183
6.1.3.1;Isotopic Composition of Archaean Concretions;183
6.1.3.2;Isotopic composition of Palaeoproterozoic concretions;187
6.1.4;Corg Recycling;192
6.1.4.1;Prior to c. 2000 Ma;192
6.1.4.2;After c. 2000 Ma;193
6.1.5;BIF-Associated Carbonates;193
6.1.6;OM Recycling and the Lomagundi-Jatuli Isotopic Event;194
6.1.7;References;195
6.2;Evolutionary Aspects of Geochemical Activity of Microbial Mats in Lakes and Hydrotherms of Baikal Rift Zone;199
6.2.1;Introduction;199
6.2.2;Hot Spring Phototrophic Microbial Mats;201
6.2.3;Non-phototrophic Biofilms;206
6.2.4;Microbial Mats of Saline and Soda Lakes;207
6.2.5;Terminal Destruction Processes in Microbial Mats;208
6.2.6;Conclusion;209
6.2.7;References;210
6.3;On the Concept for the Organization of the Modern Biosphere in the Terrestrial Subsurface;212
6.3.1;Introduction;212
6.3.2;The Zone of the Hydrocarbon-Oxidizing Bacterial Filter;213
6.3.3;The Zone of the CO2-H2 Bacterial Filter;214
6.3.4;The Zone of Naphthidiobiosis;215
6.3.5;Evaluation of the Subsurface Biota;216
6.3.6;Conclusion;216
6.3.7;References;217
6.4;Biomineralization and Evolution. Coevolution of the Mineral and Biological Worlds;219
6.4.1;Introduction;219
6.4.2;Definition of Coevolution;219
6.4.3;Biomineralization Is Coevolution of the Mineral and Biological Worlds;221
6.4.3.1;Modern Understanding and Types of Biomineralization;221
6.4.3.2;Evolution of the Composition, Structure, and Functions of Biominerals;223
6.4.4;References;225
6.5;Visualization of the Silicon Biomineralization in Cyanobacteria, Sponges and Diatoms;227
6.5.1;Introduction;227
6.5.2;Silicification of Cyanobacteria;228
6.5.3;Sponges;230
6.5.4;Diatoms;232
6.5.4.1;Studies of Morphogenesis of Early Stages of Diatom Valves;232
6.5.4.2;Discovery of Silicic Acid Transporters;233
6.5.5;References;236
6.6;Transformational Changes in Argillaceous Minerals due to Cyanobacteria;239
6.6.1;Introduction;239
6.6.2;Experimental;240
6.6.2.1;Objectives;240
6.6.2.2;Methods;241
6.6.3;Results and Discussion;242
6.6.3.1;Biological Activity of Cyanobacteria in the Presence of Clays;242
6.6.3.2;Changes in Argillaceous Minerals After Incubation with Cyanobacteria;244
6.6.4;Conclusions;248
6.6.5;References;248
7;Part IV Coevolution of Geological and Biological Events in Phanerozoe;251
7.1;Ecological Revolution Through Ordovician Biosphere (495 to 435 Ma ages): Start of the Coherent Life Evolution;252
7.1.1;References;260
8;Part V Ecosystems and Molecular Genetic Factors of Organism Evolution;262
8.1;Evolution by Gene Duplications: from the Origin of the Genetic Code to the Human Genome;263
8.1.1;Origin of the Genetic Code: Duplication in tRNA;263
8.1.1.1;Domains of tRNAs and the Paradox of Two Codes;263
8.1.1.2;Dual Complementarity in tRNAs Points to Ancient Duplication;266
8.1.1.3;Simultaneous Sense-Antisense Coding Might Predetermine Two Complementary Modes of tRNA Aminoacylation;267
8.1.2;Epigenetic Regulation of Expression, Repositioning and Evolutionary Fate of New, Redundant Gene Copies;271
8.1.2.1;Loss-or-Gain Dilemma, Effective Population Size and the Duplication-Degeneration-Complementation Model;271
8.1.2.2;The Epigenetic Complementation Model;272
8.1.2.3;Repositioning Favors Survival of Duplicate Genes;273
8.1.2.4;Repositioning Increases Mutational Asymmetry;275
8.1.2.5;Adaptive Evolution of Young Duplicates;276
8.1.2.6;EC Model and G-Value Paradox;279
8.1.3;References;280
8.2;Evolution of the Translation Termination System in Eukaryotes;283
8.2.1;The Evolutionary Origin of Termination Factors;283
8.2.2;The Structural Organization of Termination Factor eRF3;285
8.2.3;Evolution of Genes Encoding for eRF3;288
8.2.4;GSPT2 as a New Phylogenetic Marker;290
8.2.5;References;292
8.3;The Hedgehog Signaling Cascade System: Evolution and Functional Dynamics;294
8.3.1;Introduction;294
8.3.2;Modeling of the Hedgehog Signaling Cascade;296
8.3.3;Molecular Evolution of Hedgehog Signaling Cascade;299
8.3.4;Comparison of the Evolution Mode of the Hh Signaling Cascade Genes with Their Functional Load and Response Type;301
8.3.5;Discussion;301
8.3.6;Conclusions;304
8.3.7;References;305
8.4;Approaches to the Resolution of Contradictions Between Phylogenetic Systems Based on Paleontological and Molecular Data;307
8.4.1;Introduction;307
8.4.2;Historical Vertebrate Zoogeography and Molecular Phylogeny of Mammals;310
8.4.2.1;Global Historical Geography of Land Vertebrates as a Source of Information on Divergence Events in Mammalian Phylogeny;310
8.4.2.2;Basic Events in the History of Mammalian Faunas;312
8.4.2.3;Zoogeographical Dating Compared with the Phylogenetic Reconstruction Based on Molecular Data;314
8.4.3;References;316
8.5;Chromosomes and Speciation;319
8.5.1;Introduction;320
8.5.2;Sibling Species of South American Caviomorph Rodent Thrichomys;320
8.5.3;Chromosome Races of the House Musk Shrew;322
8.5.4;Chromosome Races of the Common Shrew;324
8.5.5;Conclusions;327
8.5.6;References;327
8.6;Biotic Turnover in Superorganism Systems: Several Principles of Establishment and Sustenance (Theoretical Analysis, Debatable Issues);330
8.6.1;Introduction;330
8.6.2;The Measure of Closure of Biotic Matter Cycle for Systems Based on Matter Supply;332
8.6.3;Mathematical Model of Simple Homogenous Closed Ecosystem on Matter Supply;334
8.6.3.1;Base Model Description;334
8.6.3.2;Conditions for Establishment of Biotic Matter Cycle;336
8.6.4;Examples of Closure Coefficients Calculation;339
8.6.5;On Realizability of Some Mechanisms of Sustaining Highly Closed Cycle of the Matter;342
8.6.5.1;Ecological Principle of Biological Cycle Closure;342
8.6.5.2;‘‘Evolutionary’’ Type of Closure;342
8.6.5.3;Interaction of Microevolutionary Population Parameters;344
8.6.6;General Degree of Biocycle Closure;346
8.6.7;Conclusions;348
8.6.8;References;350
8.7;Chromosomes and Continents;352
8.7.1;Introduction;353
8.7.2;Karyotype Structure in the Genus Chironomus;353
8.7.3;Divergence of Banding Sequences in the Genus Chironomus on Various Continents;355
8.7.4;Basic Banding Sequences as Markers of Evolutionary Divergence of Species Genomes;360
8.7.5;Scenario of BS Divergence;362
8.7.6;Dispersal of Species and Banding Sequences;367
8.7.7;Chromosome Evolution and Speciation;369
8.7.8;References;370
9;Part VI Biosphere And Human Being;373
9.1;Genetic Landscape of the Central Asia and Volga-Ural Region;374
9.1.1;Introduction;374
9.1.2;Materials and Methods;375
9.1.3;mtDNA Variation;376
9.1.4;Y-Chromosome Variation;379
9.1.5;References;380
9.2;Problems of Reconstruction of Paleoenvironment and Conditions of the Habitability of the Ancient Man by the Example of Northwestern Altai;383
9.2.1;Introduction;383
9.2.2;Material;384
9.2.3;Results;384
9.2.3.1;Contemporaneous Animals of the Anui Valley;384
9.2.3.2;Small Mammals from the Pleistocene of Denisova Cave;385
9.2.3.3;Small Mammals from the Ust’-Karakol Paleolithic Site;387
9.2.4;Mammal Fauna and Activity of the Paleolithic Man;387
9.2.5;References;393
9.3;The Settling of the Ancient Man by the Example of North-Western Altai;395
9.3.1;References;404
9.4;Evolutionary History of Wheats-the Main Cereal of Mankind;407
9.4.1;Material and Methods;408
9.4.1.1;Plant Materials;408
9.4.1.2;Total DNA Isolation and PCR Amplification;409
9.4.1.3;DNA Sequencing and Phylogenetic Analysis;410
9.4.2;Results and Discussion;410
9.4.2.1;Pile-Dwelling Wheat;410
9.4.2.1.1;Spherical Grains;411
9.4.2.1.2;Compact Spike;411
9.4.2.2;Chloroplast Evidence of Wheat Evolution;411
9.4.2.3;Nuclear Loci;414
9.4.2.4;Evolutionary Scenario of Genus Triticum;417
9.4.3;References;418
10;Subject Index;420




