Dobretsov / Kolchanov / Rozanov | Biosphere Origin and Evolution | E-Book | www.sack.de
E-Book

E-Book, Englisch, 437 Seiten

Dobretsov / Kolchanov / Rozanov Biosphere Origin and Evolution


1. Auflage 2007
ISBN: 978-0-387-68656-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 437 Seiten

ISBN: 978-0-387-68656-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This monograph contains articles based on the oral presentations given at the International Workshop on the Biosphere Origin and Evolution (BOE 2005) held in Novosibirsk, Russia, June 26-29, 2005. The organizers of the event were the Scientific Programme of the Presidium of the Russian Academy of Sciences, which involves 50 institutes of the Russian Academy of Sciences.

Dobretsov / Kolchanov / Rozanov Biosphere Origin and Evolution jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;10
3;Contributors;14
4;Part I Problems of Biosphere Evolution and Origin of Life;20
4.1;On Important Stages of Geosphere and Biosphere Evolution;21
4.1.1;References;38
4.2;Microbial Biosphere;42
4.2.1;Introduction;43
4.2.2;Limits for Actualistic Principle;45
4.2.3;Relict Microbial Communities;46
4.2.3.1;Formation of Landscape in Prokaryotic Biosphere;49
4.2.3.2;Trophic Structure of Cyano-bacterial Community;54
4.2.4;References;57
5;Part II Prebiological Stages of Evolution and RNA World on the Earth and in the Space;60
5.1;Astrocatalysis Hypothesis for Origin of Life Problem;61
5.1.1;Evolution of the Surroundings and the Life Origin;61
5.1.2;Astrophysics and Planetology;63
5.1.3;Astrocatalysis, "RNA World" and Life Origin;64
5.1.4;Conclusions;68
5.1.5;References;69
5.2;Comets, Carbonaceous Meteorites and the Origin of the Biosphere;70
5.2.1;Introduction;71
5.2.2;Comets, Meteorites, and the Origin and Distribution of Life;73
5.2.3;Microfossils of Cyanobacteria in the Orgueil and Murchison Meteorites;75
5.2.3.1;Morphotypes of Cyanobacteria in Carbonaceous Meteorites;76
5.2.4;Conclusions;79
5.2.5;References;80
5.3;Hierarchical Scale-Free Representation of Biological Realm-Its Origin and Evolution;84
5.3.1;Introduction;84
5.3.2;Identification of Referents;86
5.3.2.1;Defining Sets of Referents;87
5.3.3;Referents and Hierarchy of Complexity;90
5.3.3.1;From a Linnaean Hierarchy to the Hierarchy of Complexity;90
5.3.3.2;Two Directions in the Architecture of Complexity;92
5.3.3.3;Transition Thresholds and the Irreversibility of Transition;94
5.3.4;Formalization of the Referent Representation;95
5.3.4.1;Space of the Referent Signs;95
5.3.4.2;Evolutionary Equation;96
5.3.4.3;Growing of the Referent Hierarchy;98
5.3.5;Conclusions;100
5.3.6;References;101
5.4;The Prebiotic Phase of the Origin of Life as Seen by a Physical Chemist;104
5.4.1;References;116
5.5;Prebiotic Carbohydrates and Their Derivates;117
5.5.1;Introduction;117
5.5.2;The Formose Reaction;118
5.5.3;Prebiotic Synthesis of Lower (C2–C3) Carbohydrates;120
5.5.4;Selective Prebiotic Synthesis of Carbohydrates;122
5.5.4.1;Carbohydrates Synthesis Catalyzed by Natural Minerals;123
5.5.4.2;Selective Synthesis of Carbohydrates Phosphates;123
5.5.4.3;Co-condensation of Lower Carbohydrates and Formladehyde;124
5.5.4.4;Putative Prebiotic Synthesis of Carbohydrates fromForm aldehyde;125
5.5.5;Important Prebiotic Organics from Carbohydrates;126
5.5.5.1;Synthesis of Heterocycles from Carbohydrates and Ammonia;126
5.5.5.2;A ‘‘Sugar Model’’ by A.L. Weber;126
5.5.5.3;Synthesis of Cytidine Ribonucleotides on Sugar Phosphate;128
5.5.6;Conclusions;129
5.5.7;References;130
5.6;Theoretical and Computer Modeling of Evolution of Autocatalytic Systems in a Flow Reactor;132
5.6.1;Introduction;132
5.6.1.1;The ‘‘Only’’ Statements;132
5.6.1.2;On the Main Properties of Living Beings;133
5.6.1.3;Key Problem Is Due to Attempts to Explain the Exact Origin of Earth’s Life Form;133
5.6.1.4;Presuppositions Capable of Eliminating the Problem;134
5.6.1.5;On the Nature of the Predecessor;134
5.6.2;Description of Computer Model and Conditions of Real Experiment;137
5.6.3;Results of the Computer Simulation and Discussion;139
5.6.4;Conclusions;140
5.6.5;References;141
5.7;RNA World: First Steps Towards Functional Molecules;143
5.7.1;First RNA Monomers: Puzzle of Isomers;143
5.7.2;Prebiotic Synthesis of RNA Oligomers;145
5.7.3;Emergence of Catalytic RNAs;147
5.7.4;RNA Recombination: Elongation and Diversity;148
5.7.5;Concluding Remarks;152
5.7.6;References;152
5.8;Trans Hammerhead Ribozyme: Ligation vs. Cleavage;155
5.8.1;Introduction;155
5.8.2;RNA Ligation by Trans Hammerhead Ribozymes;157
5.8.3;Binary Hammerhead Ribozymes;160
5.8.4;Conclusion;164
5.8.5;References;165
5.9;Paradoxical Bistate Status of a Prebiotic Microsystem: Universal Predecessor of Life;168
5.9.1;Introduction;168
5.9.2;Fundamental Properties of Biological Systems;169
5.9.3;Stabilized Bifurcation as a Starting Point of Life;170
5.9.3.1;Main Properties of a Chemical System Close to the Bifurcation Point;171
5.9.3.2;The Corresponding Characteristics of a Living Cell;172
5.9.4;Bistate System as Prototype of a Living Organism: Theoretical Substantiation;173
5.9.5;Conclusion;176
5.9.6;References;176
6;Part III Archaen–Proterozoic Ecosystems: Their Interaction and Contemporary Analogues;178
6.1;The Ancient Anoxic Biosphere Was Not As We Know It;179
6.1.1;Introduction;179
6.1.2;Ccarb of Early Precambrian Carbonates;181
6.1.3;Diagenetic Concretions in the Early Precambrian;183
6.1.3.1;Isotopic Composition of Archaean Concretions;183
6.1.3.2;Isotopic composition of Palaeoproterozoic concretions;187
6.1.4;Corg Recycling;192
6.1.4.1;Prior to c. 2000 Ma;192
6.1.4.2;After c. 2000 Ma;193
6.1.5;BIF-Associated Carbonates;193
6.1.6;OM Recycling and the Lomagundi-Jatuli Isotopic Event;194
6.1.7;References;195
6.2;Evolutionary Aspects of Geochemical Activity of Microbial Mats in Lakes and Hydrotherms of Baikal Rift Zone;199
6.2.1;Introduction;199
6.2.2;Hot Spring Phototrophic Microbial Mats;201
6.2.3;Non-phototrophic Biofilms;206
6.2.4;Microbial Mats of Saline and Soda Lakes;207
6.2.5;Terminal Destruction Processes in Microbial Mats;208
6.2.6;Conclusion;209
6.2.7;References;210
6.3;On the Concept for the Organization of the Modern Biosphere in the Terrestrial Subsurface;212
6.3.1;Introduction;212
6.3.2;The Zone of the Hydrocarbon-Oxidizing Bacterial Filter;213
6.3.3;The Zone of the CO2-H2 Bacterial Filter;214
6.3.4;The Zone of Naphthidiobiosis;215
6.3.5;Evaluation of the Subsurface Biota;216
6.3.6;Conclusion;216
6.3.7;References;217
6.4;Biomineralization and Evolution. Coevolution of the Mineral and Biological Worlds;219
6.4.1;Introduction;219
6.4.2;Definition of Coevolution;219
6.4.3;Biomineralization Is Coevolution of the Mineral and Biological Worlds;221
6.4.3.1;Modern Understanding and Types of Biomineralization;221
6.4.3.2;Evolution of the Composition, Structure, and Functions of Biominerals;223
6.4.4;References;225
6.5;Visualization of the Silicon Biomineralization in Cyanobacteria, Sponges and Diatoms;227
6.5.1;Introduction;227
6.5.2;Silicification of Cyanobacteria;228
6.5.3;Sponges;230
6.5.4;Diatoms;232
6.5.4.1;Studies of Morphogenesis of Early Stages of Diatom Valves;232
6.5.4.2;Discovery of Silicic Acid Transporters;233
6.5.5;References;236
6.6;Transformational Changes in Argillaceous Minerals due to Cyanobacteria;239
6.6.1;Introduction;239
6.6.2;Experimental;240
6.6.2.1;Objectives;240
6.6.2.2;Methods;241
6.6.3;Results and Discussion;242
6.6.3.1;Biological Activity of Cyanobacteria in the Presence of Clays;242
6.6.3.2;Changes in Argillaceous Minerals After Incubation with Cyanobacteria;244
6.6.4;Conclusions;248
6.6.5;References;248
7;Part IV Coevolution of Geological and Biological Events in Phanerozoe;251
7.1;Ecological Revolution Through Ordovician Biosphere (495 to 435 Ma ages): Start of the Coherent Life Evolution;252
7.1.1;References;260
8;Part V Ecosystems and Molecular Genetic Factors of Organism Evolution;262
8.1;Evolution by Gene Duplications: from the Origin of the Genetic Code to the Human Genome;263
8.1.1;Origin of the Genetic Code: Duplication in tRNA;263
8.1.1.1;Domains of tRNAs and the Paradox of Two Codes;263
8.1.1.2;Dual Complementarity in tRNAs Points to Ancient Duplication;266
8.1.1.3;Simultaneous Sense-Antisense Coding Might Predetermine Two Complementary Modes of tRNA Aminoacylation;267
8.1.2;Epigenetic Regulation of Expression, Repositioning and Evolutionary Fate of New, Redundant Gene Copies;271
8.1.2.1;Loss-or-Gain Dilemma, Effective Population Size and the Duplication-Degeneration-Complementation Model;271
8.1.2.2;The Epigenetic Complementation Model;272
8.1.2.3;Repositioning Favors Survival of Duplicate Genes;273
8.1.2.4;Repositioning Increases Mutational Asymmetry;275
8.1.2.5;Adaptive Evolution of Young Duplicates;276
8.1.2.6;EC Model and G-Value Paradox;279
8.1.3;References;280
8.2;Evolution of the Translation Termination System in Eukaryotes;283
8.2.1;The Evolutionary Origin of Termination Factors;283
8.2.2;The Structural Organization of Termination Factor eRF3;285
8.2.3;Evolution of Genes Encoding for eRF3;288
8.2.4;GSPT2 as a New Phylogenetic Marker;290
8.2.5;References;292
8.3;The Hedgehog Signaling Cascade System: Evolution and Functional Dynamics;294
8.3.1;Introduction;294
8.3.2;Modeling of the Hedgehog Signaling Cascade;296
8.3.3;Molecular Evolution of Hedgehog Signaling Cascade;299
8.3.4;Comparison of the Evolution Mode of the Hh Signaling Cascade Genes with Their Functional Load and Response Type;301
8.3.5;Discussion;301
8.3.6;Conclusions;304
8.3.7;References;305
8.4;Approaches to the Resolution of Contradictions Between Phylogenetic Systems Based on Paleontological and Molecular Data;307
8.4.1;Introduction;307
8.4.2;Historical Vertebrate Zoogeography and Molecular Phylogeny of Mammals;310
8.4.2.1;Global Historical Geography of Land Vertebrates as a Source of Information on Divergence Events in Mammalian Phylogeny;310
8.4.2.2;Basic Events in the History of Mammalian Faunas;312
8.4.2.3;Zoogeographical Dating Compared with the Phylogenetic Reconstruction Based on Molecular Data;314
8.4.3;References;316
8.5;Chromosomes and Speciation;319
8.5.1;Introduction;320
8.5.2;Sibling Species of South American Caviomorph Rodent Thrichomys;320
8.5.3;Chromosome Races of the House Musk Shrew;322
8.5.4;Chromosome Races of the Common Shrew;324
8.5.5;Conclusions;327
8.5.6;References;327
8.6;Biotic Turnover in Superorganism Systems: Several Principles of Establishment and Sustenance (Theoretical Analysis, Debatable Issues);330
8.6.1;Introduction;330
8.6.2;The Measure of Closure of Biotic Matter Cycle for Systems Based on Matter Supply;332
8.6.3;Mathematical Model of Simple Homogenous Closed Ecosystem on Matter Supply;334
8.6.3.1;Base Model Description;334
8.6.3.2;Conditions for Establishment of Biotic Matter Cycle;336
8.6.4;Examples of Closure Coefficients Calculation;339
8.6.5;On Realizability of Some Mechanisms of Sustaining Highly Closed Cycle of the Matter;342
8.6.5.1;Ecological Principle of Biological Cycle Closure;342
8.6.5.2;‘‘Evolutionary’’ Type of Closure;342
8.6.5.3;Interaction of Microevolutionary Population Parameters;344
8.6.6;General Degree of Biocycle Closure;346
8.6.7;Conclusions;348
8.6.8;References;350
8.7;Chromosomes and Continents;352
8.7.1;Introduction;353
8.7.2;Karyotype Structure in the Genus Chironomus;353
8.7.3;Divergence of Banding Sequences in the Genus Chironomus on Various Continents;355
8.7.4;Basic Banding Sequences as Markers of Evolutionary Divergence of Species Genomes;360
8.7.5;Scenario of BS Divergence;362
8.7.6;Dispersal of Species and Banding Sequences;367
8.7.7;Chromosome Evolution and Speciation;369
8.7.8;References;370
9;Part VI Biosphere And Human Being;373
9.1;Genetic Landscape of the Central Asia and Volga-Ural Region;374
9.1.1;Introduction;374
9.1.2;Materials and Methods;375
9.1.3;mtDNA Variation;376
9.1.4;Y-Chromosome Variation;379
9.1.5;References;380
9.2;Problems of Reconstruction of Paleoenvironment and Conditions of the Habitability of the Ancient Man by the Example of Northwestern Altai;383
9.2.1;Introduction;383
9.2.2;Material;384
9.2.3;Results;384
9.2.3.1;Contemporaneous Animals of the Anui Valley;384
9.2.3.2;Small Mammals from the Pleistocene of Denisova Cave;385
9.2.3.3;Small Mammals from the Ust’-Karakol Paleolithic Site;387
9.2.4;Mammal Fauna and Activity of the Paleolithic Man;387
9.2.5;References;393
9.3;The Settling of the Ancient Man by the Example of North-Western Altai;395
9.3.1;References;404
9.4;Evolutionary History of Wheats-the Main Cereal of Mankind;407
9.4.1;Material and Methods;408
9.4.1.1;Plant Materials;408
9.4.1.2;Total DNA Isolation and PCR Amplification;409
9.4.1.3;DNA Sequencing and Phylogenetic Analysis;410
9.4.2;Results and Discussion;410
9.4.2.1;Pile-Dwelling Wheat;410
9.4.2.1.1;Spherical Grains;411
9.4.2.1.2;Compact Spike;411
9.4.2.2;Chloroplast Evidence of Wheat Evolution;411
9.4.2.3;Nuclear Loci;414
9.4.2.4;Evolutionary Scenario of Genus Triticum;417
9.4.3;References;418
10;Subject Index;420



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.