Buch, Englisch, 207 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Lecture Notes in Mathematics
Buch, Englisch, 207 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 347 g
Reihe: Lecture Notes in Mathematics
ISBN: 978-3-031-38383-0
Verlag: Springer
Adopting a pathwise, affine-parametric representation of the GRFs, turns the random PDEs into equivalent, countably-parametric, deterministic PDEs, with nonuniform ellipticity constants. A detailed sparsity analysis of Wiener-Hermite polynomial chaos expansions of the corresponding parametric PDE solution families by analytic continuation into the complex domain is developed, in corner- and edge-weighted function spaces on the physical domain.
The presented Algorithms and results are relevant for the mathematical analysis of many approximation methods for PDEs with GRF inputs, such as model order reduction, neural network and tensor-formatted surrogates of parametric solution families. They are expected to impact computational uncertainty quantification subject to GRF models of uncertainty in PDEs, and are of interest for researchers and graduate students in both, applied and computational mathematics, as well as in computational science and engineering.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik Mathematik Stochastik Wahrscheinlichkeitsrechnung
- Mathematik | Informatik Mathematik Stochastik Stochastische Prozesse
- Mathematik | Informatik Mathematik Mathematische Analysis Funktionalanalysis
- Mathematik | Informatik Mathematik Numerik und Wissenschaftliches Rechnen Numerische Mathematik
Weitere Infos & Material
- 1. Introduction. - 2. Preliminaries. - 3. Elliptic Divergence-Form PDEs with Log-Gaussian Coefficient. - 4. Sparsity for Holomorphic Functions. - 5. Parametric Posterior Analyticity and Sparsity in BIPs. - 6. Smolyak Sparse-Grid Interpolation and Quadrature. - 8. Multilevel Smolyak Sparse-Grid Interpolation and Quadrature. - 8. Conclusions.




