Faltings / Wüstholz | Rational Points | E-Book | sack.de
E-Book

E-Book, Englisch, Band 6, 312 Seiten, eBook

Reihe: Aspects of Mathematics

Faltings / Wüstholz Rational Points

Seminar Bonn/Wuppertal 1983/84
3rd Auflage 1992
ISBN: 978-3-322-80340-5
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark

Seminar Bonn/Wuppertal 1983/84

E-Book, Englisch, Band 6, 312 Seiten, eBook

Reihe: Aspects of Mathematics

ISBN: 978-3-322-80340-5
Verlag: Vieweg & Teubner
Format: PDF
Kopierschutz: 1 - PDF Watermark



Faltings / Wüstholz Rational Points jetzt bestellen!

Zielgruppe


Professional/practitioner

Weitere Infos & Material


I: Moduli Spaces.- § 1 Introduction.- § 2 Generalities about moduli spaces.- § 3 Examples.- § 4 Metrics with logarithmic singularities.- § 5 The minimal compactification of Ag/?.- § 8 The toroidal compactification.- II: Heights.- § 1 The definition.- § 2 Néron-Tate heights.- § 3 Heights on the moduli space.- § 4 Applications.- III: Some Facts from the Theory of Group Schemes.- § 0 Introduction.- § 1 Generalities on group schemes.- § 2 Finite group schemes.- § 3 p-divisible groups.- § 4 A theorem of Raynaud.- § 5 A theorem of Tate.- IV: Tate’s Conjecture on the Endomorphisms of Abelian Varieties.- § 1 Statements.- § 2 Reductions.- § 3 Heights.- § 4 Variants.- V: The Finiteness Theorems of Faltings.- § 1 Introduction.- § 2 The finiteness theorem for isogeny classes.- § 3 The finiteness theorem for isomorphism classes.- § 4 Proof of Mordell’s conjecture.- § 5 Siegel’s Theorem on integer points.- VI: Complements to Mordell.- § 1 Introduction.- § 2 Preliminaries.- § 3 The Tate conjecture.-§ 4 The Shafarevich conjecture.- § 5 Endomorphisms.- § 6 Effectivity.- VII: Intersection Theory on Arithmetic Surfaces.- § 0 Introduction.- § 1 Hermitian line bundles.- § 2 Arakelov divisors and intersection theory.- § 3 Volume forms on IR?(X, ?).- § 4 Riemann Roch.- § 5 The Hodge index theorem.- Appendix: New Developments in Diophantine and Arithmetic Algebraic Geometry (Gisbert Wüstholz).- § 2 The transcendental approach.- § 3 Vojta’s approach.- § 4 Arithmetic Riemann-Roch Theorem.- § 5 Applications in Arithmetic.- § 6 Small sections.- § 7 Vojta’s proof in the number field case.- § 8 Lang’s conjecture.- § 9 Proof of Faltings’ theorem.- § 10 An elementary proof of Mordell’s conjecture.- § 11 ?-adic representations attached to abelian varieties.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.