Fang | Causal Inference in Pharmaceutical Statistics | Buch | 978-1-032-56014-4 | sack.de

Buch, Englisch, 246 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 537 g

Reihe: Chapman & Hall/CRC Biostatistics Series

Fang

Causal Inference in Pharmaceutical Statistics


1. Auflage 2024
ISBN: 978-1-032-56014-4
Verlag: Chapman and Hall/CRC

Buch, Englisch, 246 Seiten, Format (B × H): 161 mm x 240 mm, Gewicht: 537 g

Reihe: Chapman & Hall/CRC Biostatistics Series

ISBN: 978-1-032-56014-4
Verlag: Chapman and Hall/CRC


Causal Inference in Pharmaceutical Statistics introduces the basic concepts and fundamental methods of causal inference relevant to pharmaceutical statistics. This book covers causal thinking for different types of commonly used study designs in the pharmaceutical industry, including but not limited to randomized controlled clinical trials, longitudinal studies, singlearm clinical trials with external controls, and real-world evidence studies. The book starts with the central questions in drug development and licensing, takes the reader through the basic concepts and methods via different study types and through different stages, and concludes with a roadmap to conduct causal inference in clinical studies. The book is intended for clinical statisticians and epidemiologists working in the pharmaceutical industry. It will also be useful to graduate students in statistics, biostatistics, and data science looking to pursue a career in the pharmaceutical industry.

Key Features:

- Causal inference book for clinical statisticians in the pharmaceutical industry

- Introductory level on the most important concepts and methods

- Align with FDA and ICH guidance documents

- Across different stages of clinical studies: plan, design, conduct, analysis, and interpretation

- Cover a variety of commonly used study designs

Fang Causal Inference in Pharmaceutical Statistics jetzt bestellen!

Zielgruppe


Professional Reference


Autoren/Hrsg.


Weitere Infos & Material


Preface

1. Introduction

2. Randomized Controlled Clinical Trials

3. Missing Data Handling

4. Intercurrent Events Handling

5. Longitudinal Studies

6. Real-World Evidence Studies

7. The Art of Estimation (I): M-estimation

8. The Art of Estimation (II): TMLE

9. The Art of Estimation (III): LTMLE

10. Sensitivity Analysis

11. A Roadmap for Causal Inference

12. Applications of the Roadmap

Bibliography


Yixin Fang, Ph.D. is Director of Statistics and Research Fellow at AbbVie Inc. He obtained his Ph.D. in Statistics from Columbia University and is an experienced statistician and data scientist who has a history of working in both the biopharmaceutical industry and academia.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.