E-Book, Englisch, 253 Seiten
Reihe: Green Energy and Technology
Franco / Doublet / Bessler Physical Multiscale Modeling and Numerical Simulation of Electrochemical Devices for Energy Conversion and Storage
1. Auflage 2016
ISBN: 978-1-4471-5677-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
From Theory to Engineering to Practice
E-Book, Englisch, 253 Seiten
Reihe: Green Energy and Technology
ISBN: 978-1-4471-5677-2
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
The aim of this book is to review innovative physical multiscale modeling methods which numerically simulate the structure and properties of electrochemical devices for energy storage and conversion. Written by world-class experts in the field, it revisits concepts, methodologies and approaches connecting ab initio with micro-, meso- and macro-scale modeling of components and cells. It also discusses the major scientific challenges of this field, such as that of lithium-ion batteries. This book demonstrates how fuel cells and batteries can be brought together to take advantage of well-established multi-scale physical modeling methodologies to advance research in this area. This book also highlights promising capabilities of such approaches for inexpensive virtual experimentation. In recent years, electrochemical systems such as polymer electrolyte membrane fuel cells, solid oxide fuel cells, water electrolyzers, lithium-ion batteries and supercapacitors have attracted much attention due to their potential for clean energy conversion and as storage devices. This has resulted in tremendous technological progress, such as the development of new electrolytes and new engineering designs of electrode structures. However, these technologies do not yet possess all the necessary characteristics, especially in terms of cost and durability, to compete within the most attractive markets. Physical multiscale modeling approaches bridge the gap between materials' atomistic and structural properties and the macroscopic behavior of a device. They play a crucial role in optimizing the materials and operation in real-life conditions, thereby enabling enhanced cell performance and durability at a reduced cost. This book provides a valuable resource for researchers, engineers and students interested in physical modelling, numerical simulation, electrochemistry and theoretical chemistry.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;Contents;8
3;1 Atomistic Modeling of Electrode Materials for Li-Ion Batteries: From Bulk to Interfaces;9
3.1;Abstract;9
3.2;1 Introduction;9
3.3;2 Macroscopic Picture of an Electrochemical Reaction;11
3.3.1;2.1 Microscopic Picture of an Electrochemical Reaction;13
3.3.2;2.2 Beyond the Thermodynamic Equilibrium;14
3.3.3;2.3 First-Principles Approach to Condensed Matter;15
3.4;3 Modelization of Bulk Materials;18
3.4.1;3.1 Equilibrium Crystal Structures;18
3.4.2;3.2 Finite Temperature Effects;21
3.4.3;3.3 Electrochemical Properties;24
3.5;4 Modelization of Interfaces;30
3.5.1;4.1 Surface/Interface Thermodynamics;30
3.5.2;4.2 First-Principles Approach to Charged Surfaces;33
3.5.3;4.3 Application to Solid/Liquid Interfaces;35
3.5.4;4.4 Application to Solid/Solid Interfaces;36
3.6;5 Perspectives;39
3.7;References;40
4;2 Multi-scale Simulation Study of Pt-Alloys Degradation for Fuel Cells Applications;45
4.1;Abstract;45
4.2;1 Introduction;45
4.3;2 Time Evolution by Molecular Dynamics and DFT Simulations;48
4.4;3 Time Evolution of PtM Alloys by KMC Methods;51
4.5;4 Degradation of PtCo Skin;57
4.6;5 Concluding Remarks;64
4.7;References;65
5;3 Molecular Dynamics Simulations of Electrochemical Energy Storage Devices;68
5.1;Abstract;68
5.2;1 Introduction;69
5.3;2 Molecular Dynamics;71
5.3.1;2.1 Principle;71
5.3.2;2.2 All-Atom Force Fields;71
5.3.3;2.3 Modelling Metallic Electrodes at Constant Potential;72
5.3.4;2.4 Coarse-Grained Force Fields;73
5.4;3 Li-Ion Batteries;74
5.4.1;3.1 A Polarizable Force Field Based on First-Principles Calculations;75
5.4.2;3.2 Conduction Mechanism in Stoichiometric LiMgSO4F;76
5.4.3;3.3 Effect of Li+ Vacancies;80
5.4.4;3.4 On the Importance of Finite-Size Effects;82
5.5;4 Supercapacitors;83
5.5.1;4.1 Increase of the Capacitance in Nanoporous Carbons;83
5.5.2;4.2 Effect of the Local Structure;86
5.5.3;4.3 Dynamics of Charging: Coarse-Graining Further;88
5.6;5 Perspectives;89
5.7;References;90
6;4 Continuum, Macroscopic Modeling of Polymer-Electrolyte Fuel Cells;97
6.1;Abstract;97
6.2;1 Introduction;97
6.2.1;1.1 Modeling Dimension;101
6.3;2 Basic Governing Equations;103
6.3.1;2.1 Material;104
6.3.1.1;2.1.1 Charge;106
6.3.1.2;2.1.2 Momentum;109
6.3.1.3;2.1.3 Energy;110
6.4;3 Membrane;112
6.4.1;3.1 Membrane Uptake, Morphology, and Function;114
6.4.1.1;3.1.1 Calculating Water Uptake;116
6.4.2;3.2 Transport Equations;119
6.4.2.1;3.2.1 General Governing Equations;119
6.4.2.2;3.2.2 Choice of Water Driving Force and Transport Parameters;121
6.4.2.3;3.2.3 Gas Crossover;123
6.4.3;3.3 Membrane Swelling;124
6.4.4;3.4 Contamination and Multi-ion Transport;125
6.5;4 Gas-Diffusion Media;128
6.5.1;4.1 Modeling Equations;128
6.5.1.1;4.1.1 Gas Phase;129
6.5.1.2;4.1.2 Liquid Phase;130
6.5.1.3;4.1.3 Heat Transport;131
6.5.1.4;4.1.4 Liquid/Vapor/Heat Interactions;132
6.5.2;4.2 Microporous Layers and Pore-Network Modeling;133
6.5.3;4.3 Transport in the Gas Channel;134
6.5.3.1;4.3.1 Droplet Movement;136
6.6;5 Catalyst Layer;137
6.6.1;5.1 Kinetics;138
6.6.2;5.2 Transport Phenomena;143
6.6.2.1;5.2.1 Agglomerate Length Scale and Ionomer Films;144
6.6.3;5.3 Electrochemical Impedance Spectroscopy;146
6.7;6 Summary and Future Outlook;149
6.8;References;150
7;5 Mathematical Modeling of Aging of Li-Ion Batteries;156
7.1;Abstract;156
7.2;1 Introduction;156
7.3;2 Brief Overview of the Degradation Phenomena in Li-Ion Batteries;160
7.3.1;2.1 Aging at the Anode;160
7.3.2;2.2 Aging at the Cathode;163
7.4;3 Mathematical Models;166
7.4.1;3.1 Performance (Aging-Free) Models;166
7.4.1.1;3.1.1 Model of the Elementary Sandwich (``Dualfoil'');166
7.4.1.2;3.1.2 Single-Particle Model;169
7.4.2;3.2 Modeling of Aging Phenomena;170
7.5;4 Model-Aided Analysis of Battery Aging;177
7.5.1;4.1 Typical Aging Experiments and Characterization;177
7.5.1.1;4.1.1 Aging protocols;177
7.5.1.2;4.1.2 Nonintrusive Cell Characterization Techniques;178
7.5.1.3;4.1.3 Intrusive Analysis;182
7.5.2;4.2 ``Snapshot'' Analysis with the Aging-Free Model;185
7.5.3;4.3 Analysis with the Aging Model;189
7.6;5 Outlook of Physics-Based Aging Modeling;191
7.7;References;192
8;6 Fuel Cells and Batteries In Silico Experimentation Through Integrative Multiscale Modeling;196
8.1;Abstract;196
8.2;1 Introduction;197
8.2.1;1.1 The Role of Computational Electrochemistry;198
8.3;2 Integrative Multiscale Modeling Methods;200
8.4;3 Application Examples;206
8.4.1;3.1 Microstructurally Resolved Performance Models;206
8.4.2;3.2 Performance Models with Detailed Electrochemistry;219
8.5;4 Conclusions and Open Challenges;229
8.6;References;233
9;7 Cost Modeling and Valuation of Grid-Scale Electrochemical Energy Storage Technologies;239
9.1;Abstract;239
9.2;1 Introduction;240
9.3;2 Methodology;241
9.4;3 Performance Matrix;242
9.5;4 Techno-Economic Cost Modeling;244
9.5.1;4.1 Analytics Framework;245
9.5.2;4.2 Determining Storage Benefits;245
9.6;5 Databases;249
9.6.1;5.1 Database of Storage Technologies;249
9.6.2;5.2 Database of Storage Applications;250
9.7;6 Storage Valuation;250
9.8;7 Summary and Conclusion;252
9.9;References;252




