Gabizon | Deterministic Extraction from Weak Random Sources | E-Book | www.sack.de
E-Book

Gabizon Deterministic Extraction from Weak Random Sources


1. Auflage 2010
ISBN: 978-3-642-14903-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 148 Seiten

Reihe: Monographs in Theoretical Computer Science. An EATCS Series

ISBN: 978-3-642-14903-0
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



A deterministic extractor is a function that extracts almost perfect random bits from a weak random source. In this research monograph the author constructs deterministic extractors for several types of sources. A basic theme in this work is a methodology of recycling randomness which enables increasing the output length of deterministic extractors to near optimal length. The author's main work examines deterministic extractors for bit-fixing sources, deterministic extractors for affine sources and polynomial sources over large fields, and increasing the output length of zero-error dispersers. This work will be of interest to researchers and graduate students in combinatorics and theoretical computer science.

Gabizon Deterministic Extraction from Weak Random Sources jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;4
2;Contents;8
3;1 Introduction;11
3.1;1.1 Organization of This Book;11
3.2;1.2 The Classical Story;11
3.2.1;1.2.1 Seeded Extractors;13
3.2.2;1.2.2 Deterministic Extraction for Restricted Classes;13
3.3;1.3 Other Motivations;13
3.4;1.4 Techniques --- the Recycling Paradigm;15
3.4.1;1.4.1 A Simple Example;15
3.4.2;1.4.2 The General Principle and the Applicationfor Affine Sources;16
3.4.3;1.4.3 The Recycling Paradigm in Bit-Fixing Sources;18
3.4.4;1.4.4 The Recycling Paradigm for Zero-Error Dispersers;19
3.4.5;1.4.5 What Else Is There in This Book?;20
4;2 Deterministic Extractors for Bit-Fixing Sources by Obtaining an Independent Seed;21
4.1;2.1 Introduction;22
4.1.1;2.1.1 Bit-Fixing Sources;22
4.1.2;2.1.2 Our Results;23
4.1.3;2.1.3 Overview of Techniques;23
4.1.4;2.1.4 Outline;28
4.2;2.2 Preliminaries;28
4.2.1;2.2.1 Averaging Samplers;28
4.2.2;2.2.2 Probability Distributions;29
4.3;2.3 Obtaining an Independent Seed;31
4.3.1;2.3.1 Seed Obtainers and Their Application;31
4.3.2;2.3.2 Constructing Seed Obtainers;32
4.4;2.4 Extracting a Few Bits for Any k;35
4.5;2.5 Sampling and Partitioning with a Short Seed;35
4.6;2.6 A Seeded Bit-Fixing Source Extractor with a Short Seed;37
4.7;2.7 Deterministic Extractors for Bit-Fixing Sources;38
4.7.1;2.7.1 An Extractor for Large k (Proof of Theorem 2.1);38
4.7.2;2.7.2 An Extractor for Small k (Proof of Theorem 2.2);40
4.8;2.8 Discussion and Open Problems;41
5;3 Deterministic Extractors for Affine Sources over Large Fields;43
5.1;3.1 Introduction;43
5.1.1;3.1.1 Affine Source Extractors;44
5.1.2;3.1.2 Our Results;44
5.1.3;3.1.3 Previous Work;45
5.2;3.2 Overview of Techniques;45
5.2.1;3.2.1 Extracting Many Bits from Lines;46
5.2.2;3.2.2 Linear Seeded Affine Source Extractors;47
5.2.3;3.2.3 Using the Correlated Randomness as a Seed;48
5.3;3.3 Preliminaries;49
5.3.1;3.3.1 Probability Distributions;49
5.3.2;3.3.2 Characters of Finite Fields;51
5.4;3.4 Extracting One Bit from Lines;54
5.5;3.5 Extracting Many Bits from Lines;55
5.6;3.6 A Linear Seeded Extractor for Affine Sources;59
5.7;3.7 Composing Extractors;61
5.8;3.8 Putting It All Together;63
6;4 Extractors and Rank Extractors for Polynomial Sources;64
6.1;4.1 Introduction;65
6.1.1;4.1.1 Rank Extractors;66
6.1.2;4.1.2 Extractors and Condensers for Polynomial Sources;67
6.1.3;4.1.3 Rank Versus Entropy --- Weak Polynomial Sources;70
6.1.4;4.1.4 Organization;71
6.2;4.2 General Preliminaries;71
6.2.1;4.2.1 Probability Distributions;71
6.2.2;4.2.2 Polynomials over Finite Fields;72
6.2.3;4.2.3 The Number of Solutions to a System of Polynomial Equations;74
6.3;4.3 Algebraic Independence and Rank;75
6.4;4.4 An Explicit Rank Extractor;77
6.4.1;4.4.1 Preliminaries for the Proof of Theorem 4.4;78
6.4.2;4.4.2 Proof of Theorem 4.4;79
6.5;4.5 Extractors for Polynomial Sources;82
6.5.1;4.5.1 Preliminaries for the Proof of Theorem 4.5;83
6.5.2;4.5.2 Proof of Theorem 4.5;86
6.6;4.6 Improving the Output Length;89
6.7;4.7 Extractors for Weak Polynomial Sources ;91
6.7.1;4.7.1 Proof of Theorem 4.9;92
6.7.2;4.7.2 The Entropy of a Polynomial Mapping;95
6.8;4.8 Rank Extractors over the Complex Numbers;96
6.9;4.9 Discussion and Open Problems;97
7;5 Increasing the Output Length of Zero-Error Dispersers;99
7.1;5.1 Introduction;100
7.1.1;5.1.1 Randomness Extractors and Dispersers;100
7.1.2;5.1.2 Zero-Error Dispersers;101
7.1.3;5.1.3 Increasing the Output Length of Zero-Error Dispersers;102
7.1.4;5.1.4 Applications;104
7.1.5;5.1.5 Outline;110
7.2;5.2 Preliminaries;110
7.3;5.3 A Composition Theorem;113
7.3.1;5.3.1 Zero-Error Dispersers;113
7.3.2;5.3.2 Strongly Hitting Dispersers;114
7.4;5.4 Zero-Error Dispersers for Multiple Independent Sources;116
7.4.1;5.4.1 Formal Definition of Multiple Independent Sources;116
7.4.2;5.4.2 A Subsource Hitter for 2-Sources;116
7.4.3;5.4.3 Zero-Error Dispersers for 2-Sources;119
7.4.4;5.4.4 Zero-Error Dispersers for O(1)-Sources;121
7.4.5;5.4.5 Rainbows and Implicit O(1) Probe Search;122
7.5;5.5 Zero-Error Dispersers for Bit-Fixing Sources;124
7.6;5.6 Zero-Error Dispersers for Affine Sources;127
7.7;5.7 Open Problems;129
8;A Sampling and Partitioning;131
8.1;A.1 Sampling Using l-wise Independence;131
8.2;A.2 Sampling and Partitioning Using Fewer Bits;133
9;B Basic Notions from Algebraic Geometry;137
9.1;B.1 Affine and Projective Varieties;137
9.2;B.2 Varieties and Ideals;139
9.3;B.3 The Dimension and Degree of a Variety;140
9.4;B.4 The Projective Closure of an Affine Variety;143
9.5;B.5 The Dimension of Intersections of Hypersurfaces;144
9.6;B.6 The Degree of Intersections of Hypersurfaces;146
9.7;B.7 Bombieri's Theorem;148
10;Bibliography;150



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.