Ghodssi / Lin | MEMS Materials and Processes Handbook | E-Book | www.sack.de
E-Book

E-Book, Englisch, Band 1, 1188 Seiten

Reihe: MEMS Reference Shelf

Ghodssi / Lin MEMS Materials and Processes Handbook


1. Auflage 2011
ISBN: 978-0-387-47318-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, Band 1, 1188 Seiten

Reihe: MEMS Reference Shelf

ISBN: 978-0-387-47318-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



MEMs Materials and Processes Handbook' is a comprehensive reference for researchers searching for new materials, properties of known materials, or specific processes available for MEMS fabrication. The content is separated into distinct sections on 'Materials' and 'Processes'. The extensive Material Selection Guide' and a 'Material Database' guides the reader through the selection of appropriate materials for the required task at hand. The 'Processes' section of the book is organized as a catalog of various microfabrication processes, each with a brief introduction to the technology, as well as examples of common uses in MEMs.

Ghodssi / Lin MEMS Materials and Processes Handbook jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Foreword;6
2;Preface;7
3;Contents;10
4;Contributors;31
5;1 The MEMS Design Process;34
5.1;1.1 Introduction;34
5.1.1;1.1.1 Design Process;38
5.2;1.2 Design Methods for MEMS;40
5.2.1;1.2.1 History of Design Methodologies;40
5.2.2;1.2.2 Structured Design Methods for MEMS;41
5.3;1.3 Brainstorming;42
5.4;1.4 Microphone Case Studies;43
5.4.1;1.4.1 Microphone Background;43
5.4.2;1.4.2 The Avago Story;44
5.4.2.1;1.4.2.1 Design Process and Methods;44
5.4.3;1.4.3 The Knowles Story;53
5.4.4;1.4.4 Summary of Key Concepts;55
5.5;1.5 Materials and Process Selection;56
5.5.1;1.5.1 Materials Selection;56
5.5.2;1.5.2 Process Selection;56
5.6;1.6 Evaluate Concepts;63
5.6.1;1.6.1 Modeling;63
5.7;1.7 Optimization and Other Design Methods;64
5.7.1;1.7.1 Design Optimization;64
5.7.2;1.7.2 Uncertainty Analysis;64
5.7.3;1.7.3 FMEA;64
5.7.4;1.7.4 Design Method Timing;65
5.8;1.8 Summary;66
5.9;References;66
6;2 Additive Processes for Semiconductors and Dielectric Materials;70
6.1;2.1 Overview;70
6.2;2.2 Thermal Conversion;71
6.2.1;2.2.1 Process Overview;71
6.2.2;2.2.2 Material Properties and Process Selection Guide for Thermal Oxidation of Silicon;76
6.2.3;2.2.3 Case Studies;78
6.3;2.3 Chemical Vapor Deposition;78
6.3.1;2.3.1 Process Overviews;78
6.3.1.1;2.3.1.1 Introduction;78
6.3.1.2;2.3.1.2 Low Pressure Chemical Vapor Deposition;80
6.3.1.3;2.3.1.3 Plasma-Enhanced Chemical Vapor Deposition;83
6.3.1.4;2.3.1.4 Atmospheric Pressure Chemical Vapor Deposition;85
6.3.1.5;2.3.1.5 Hot Filament Chemical Vapor Deposition;86
6.3.1.6;2.3.1.6 Microwave Plasma Chemical Vapor Deposition;86
6.3.2;2.3.2 LPCVD Polycrystalline Silicon;86
6.3.2.1;2.3.2.1 Material Properties and Process Generalities;86
6.3.2.2;2.3.2.2 Process Selection Guidelines;88
6.3.2.3;2.3.2.3 Case Studies;89
6.3.3;2.3.3 LPCVD Silicon Dioxide;98
6.3.3.1;2.3.3.1 Material Properties and Process Generalities;98
6.3.3.2;2.3.3.2 Process Selection Guidelines;99
6.3.3.3;2.3.3.3 Case Studies;100
6.3.4;2.3.4 LPCVD Silicon Nitride;102
6.3.4.1;2.3.4.1 Material Properties and Process Generalities;102
6.3.4.2;2.3.4.2 Process Selection Guidelines;103
6.3.4.3;2.3.4.3 Case Studies;103
6.3.5;2.3.5 LPCVD Polycrystalline SiGe and Ge;106
6.3.5.1;2.3.5.1 Material Properties and Process Generalities;106
6.3.5.2;2.3.5.2 Process Selection Guidelines;108
6.3.6;2.3.6 LPCVD Polycrystalline Silicon Carbide;108
6.3.6.1;2.3.6.1 Material Properties and Process Generalities;108
6.3.6.2;2.3.6.2 Process Selection Guidelines;112
6.3.6.3;2.3.6.3 Case Studies;112
6.3.7;2.3.7 LPCVD Diamond;118
6.3.7.1;2.3.7.1 Material Properties and Process Generalities;118
6.3.7.2;2.3.7.2 Process Selection Guidelines;119
6.3.7.3;2.3.7.3 Case Studies;119
6.3.8;2.3.8 APCVD Polycrystalline Silicon Carbide;122
6.3.8.1;2.3.8.1 Material Properties and Process Generalities;122
6.3.8.2;2.3.8.2 Process Selection Guidelines;122
6.3.9;2.3.9 PECVD Silicon;122
6.3.9.1;2.3.9.1 Material Properties and Process Generalities;122
6.3.9.2;2.3.9.2 Process Selection Guidelines;124
6.3.10;2.3.10 PECVD Silicon Dioxide;124
6.3.10.1;2.3.10.1 Material Properties and Process Generalities;124
6.3.10.2;2.3.10.2 Process Selection Guidelines;124
6.3.11;2.3.11 PECVD Silicon Nitride;128
6.3.11.1;2.3.11.1 Material Properties and Process Generalities;128
6.3.11.2;2.3.11.2 Process Selection Guidelines;128
6.3.12;2.3.12 PECVD Silicon Germanium;128
6.3.12.1;2.3.12.1 Material Properties and Process Generalities;128
6.3.12.2;2.3.12.2 Process Selection Guidelines;130
6.3.12.3;2.3.12.3 Case Studies;130
6.3.13;2.3.13 PECVD Silicon Carbide;134
6.3.13.1;2.3.13.1 Material Properties and Process Generalities;134
6.3.13.2;2.3.13.2 Process Selection Guidelines;135
6.3.13.3;2.3.13.3 Case Studies;135
6.3.14;2.3.14 PECVD Carbon-Based Films;137
6.3.14.1;2.3.14.1 Material Properties and Process Generalities;137
6.3.14.2;2.3.14.2 Process Selection Guidelines;137
6.4;2.4 Epitaxy;138
6.4.1;2.4.1 Process Overviews;138
6.4.2;2.4.2 Epi-Polysilicon;139
6.4.2.1;2.4.2.1 Material Properties and Process Generalities;139
6.4.2.2;2.4.2.2 Process Selection Guidelines;140
6.4.2.3;2.4.2.3 Case Studies;140
6.4.3;2.4.3 Epitaxial Silicon Carbide;141
6.4.3.1;2.4.3.1 Material Properties and Process Generalities;141
6.4.3.2;2.4.3.2 Process Selection Guidelines;142
6.4.3.3;2.4.3.3 Case Studies;142
6.4.4;2.4.4 III-V Materials and Gallium Nitride;144
6.4.4.1;2.4.4.1 Material Properties and Process Generalities;144
6.4.4.2;2.4.4.2 Process Selection Guidelines;144
6.4.4.3;2.4.4.3 Case Studies;144
6.5;2.5 Physical Vapor Deposition;147
6.5.1;2.5.1 Process Overviews;147
6.5.2;2.5.2 Sputter-Deposited Si;148
6.5.2.1;2.5.2.1 Material Properties and Process Generalities;148
6.5.2.2;2.5.2.2 Process Selection Guidelines;149
6.5.3;2.5.3 Sputter-Deposited SiC;149
6.5.4;2.5.4 Sputter-Deposited SiO2;150
6.5.5;2.5.5 Sputter-Deposited Diamondlike Carbon;151
6.5.6;2.5.6 Carbon Films Deposited by Pulsed Laser Deposition;151
6.6;2.6 Atomic Layer Deposition;152
6.6.1;2.6.1 Process Overview;152
6.6.2;2.6.2 Process Selection Guidelines and Material Properties;153
6.7;2.7 Spin-On Films;154
6.8;References;156
7;3 Additive Processes for Metals;170
7.1;3.1 Introduction;170
7.1.1;3.1.1 Overview;171
7.1.2;3.1.2 Fabrication Tradeoffs;172
7.2;3.2 Physical Vapor Deposition;173
7.2.1;3.2.1 Evaporation;173
7.2.1.1;3.2.1.1 Thermal Evaporation;174
7.2.1.2;3.2.1.2 E-Beam Evaporation;175
7.2.1.3;3.2.1.3 Issues with Alloys;175
7.2.2;3.2.2 Sputtering;175
7.2.2.1;3.2.2.1 DC Sputtering;176
7.2.2.2;3.2.2.2 RF Sputtering;177
7.2.2.3;3.2.2.3 Step Coverage;177
7.2.2.4;3.2.2.4 Other Issues in Sputtering;178
7.2.3;3.2.3 Pulsed Laser Deposition;179
7.3;3.3 Electrochemical Deposition;180
7.3.1;3.3.1 Electroplating;180
7.3.1.1;3.3.1.1 Electrochemical Reactions;180
7.3.1.2;3.3.1.2 Deposition Process;182
7.3.1.3;3.3.1.3 Overpotential;185
7.3.1.4;3.3.1.4 Bath Composition;186
7.3.1.5;3.3.1.5 Current Waveform;186
7.3.1.6;3.3.1.6 Equipment;188
7.3.1.7;3.3.1.7 Process Flow;190
7.3.1.8;3.3.1.8 Nickel;191
7.3.1.9;3.3.1.9 Copper;192
7.3.1.10;3.3.1.10 Gold;192
7.3.1.11;3.3.1.11 Nickel Alloys;194
7.3.2;3.3.2 Electroless Plating;195
7.3.2.1;3.3.2.1 Nickel;197
7.3.2.2;3.3.2.2 Copper;199
7.3.2.3;3.3.2.3 Gold;201
7.3.3;3.3.3 Comparison of Electroplating and Electroless Plating;202
7.4;3.4 LIGA and UV-LIGA Processes;202
7.4.1;3.4.1 Process Explanation;203
7.4.2;3.4.2 Electroplating in LIGA and UV-LIGA Microstructures;204
7.4.3;3.4.3 Multilevel Metal Structures;206
7.5;3.5 Materials Properties and Process Selection Guidelines for Metals;212
7.5.1;3.5.1 Adhesion;212
7.5.2;3.5.2 Electrical Properties;213
7.5.3;3.5.3 Mechanical Properties;215
7.5.4;3.5.4 Thermal Properties;216
7.5.5;3.5.5 Magnetic Properties;217
7.6;References;219
8;4 Additive Processes for Polymeric Materials;225
8.1;4.1 SU-8;225
8.1.1;4.1.1 Material Properties;227
8.1.2;4.1.2 Processing Variations;228
8.1.2.1;4.1.2.1 Partial Exposure;228
8.1.2.2;4.1.2.2 Direct Writing;229
8.1.2.3;4.1.2.3 Removal of SU-8;229
8.1.2.4;4.1.2.4 Release of SU-8;230
8.1.2.5;4.1.2.5 Bonding;230
8.1.2.6;4.1.2.6 Transfer;231
8.1.2.7;4.1.2.7 SU-8 as an Etch Mask;231
8.1.3;4.1.3 Lessons Learned;231
8.1.4;4.1.4 Examples of SU-8 Application;233
8.2;4.2 PDMS;233
8.2.1;4.2.1 Material Properties;234
8.2.2;4.2.2 Processing Techniques;235
8.2.3;4.2.3 Biological Application Guide;237
8.2.3.1;4.2.3.1 Stamp Material for Protein Transfer: Microcontact Printing;238
8.2.3.2;4.2.3.2 Microfluidic Devices;238
8.2.4;4.2.4 Case Study;240
8.3;4.3 Polyimide;244
8.3.1;4.3.1 Material Properties;244
8.3.2;4.3.2 Processing Variations;245
8.3.2.1;4.3.2.1 Removal of Polyimide;245
8.3.2.2;4.3.2.2 Release of Polyimide;245
8.3.2.3;4.3.2.3 Bonding;247
8.3.3;4.3.3 Lessons Learned;247
8.3.4;4.3.4 Case Study;248
8.4;4.4 Hydrogels;248
8.4.1;4.4.1 Gelatin;248
8.4.2;4.4.2 Chitosan;250
8.4.3;4.4.3 Polyethylene Glycol;252
8.4.4;4.4.4 Case Studies;254
8.5;4.5 Parylene;255
8.5.1;4.5.1 Material Properties;256
8.5.2;4.5.2 Processing Techniques;257
8.5.3;4.5.3 Lessons Learned;258
8.5.4;4.5.4 Case Study;258
8.6;4.6 Conductive Polymers;259
8.6.1;4.6.1 Material Properties;260
8.6.2;4.6.2 Actuation Mechanism and Theories;261
8.6.3;4.6.3 Applications;262
8.6.3.1;4.6.3.1 Actuators;262
8.6.3.2;4.6.3.2 Conducting Polymer as a Strain Gauge Material;263
8.6.4;4.6.4 Processing Techniques;263
8.6.4.1;4.6.4.1 Deposition;263
8.6.4.2;4.6.4.2 Patterning;264
8.6.4.3;4.6.4.3 Release;264
8.6.4.4;4.6.4.4 Process Considerations;265
8.6.5;4.6.5 Case Study;265
8.7;4.7 Other Polymers;267
8.7.1;4.7.1 Benzocyclobutene;267
8.7.2;4.7.2 Liquid Crystal Polymer;270
8.8;4.8 Polymers for Embossing and Molding;271
8.8.1;4.8.1 Technical Overview;271
8.8.2;4.8.2 Substrate Material Selection;273
8.8.2.1;4.8.2.1 Polymethylmethacrylate;273
8.8.2.2;4.8.2.2 Polycarbonate;274
8.8.2.3;4.8.2.3 Polytetrafluoroethylene;274
8.8.2.4;4.8.2.4 Cyclic Olefin Copolymer;274
8.8.3;4.8.3 Tool Selection;274
8.8.4;4.8.4 Mold Material Selection and Fabrication;275
8.8.4.1;4.8.4.1 Silicon;275
8.8.4.2;4.8.4.2 Nickel;276
8.8.4.3;4.8.4.3 SU-8;277
8.8.5;4.8.5 Conventional Machining of Molds;278
8.8.5.1;4.8.5.1 Milling;278
8.8.5.2;4.8.5.2 Laser;279
8.8.5.3;4.8.5.3 Focused Ion Beam;279
8.8.5.4;4.8.5.4 Fixture of Molds;279
8.8.5.5;4.8.5.5 Release Coatings;279
8.8.6;4.8.6 Process Development;279
8.8.7;4.8.7 Minimum Substrate Thickness;281
8.9;4.9 Materials Properties;282
8.10;References;282
9;5 Additive Processes for Piezoelectric Materials: Piezoelectric MEMS;304
9.1;5.1 Introduction to Piezoelectric Thin Films;304
9.1.1;5.1.1 Direct and Converse Piezoelectricity;306
9.1.2;5.1.2 Materials -- Ferroelectrics and Nonferroelectrics;307
9.1.3;5.1.3 Fundamental Design Equations and Models;312
9.1.3.1;5.1.3.1 Linear Constitutive Equations of Piezoelectricity;312
9.1.3.2;5.1.3.2 Electromechanical Coupling Factors;313
9.1.3.3;5.1.3.3 Influence of Boundary Conditions;315
9.1.3.4;5.1.3.4 Device Configurations;316
9.1.3.5;5.1.3.5 Free Strain and Blocking Force;318
9.1.3.6;5.1.3.6 Cantilever Unimorph Model;319
9.1.3.7;5.1.3.7 Actuator Force Generation Against External Loads;322
9.1.3.8;5.1.3.8 Piezoelectric Sensing;323
9.1.3.9;5.1.3.9 Equivalent Circuit Models;325
9.1.3.10;5.1.3.10 Thin-Film Ferroelectric Nonlinearity;326
9.1.3.11;5.1.3.11 Heat Generation;330
9.1.4;5.1.4 Materials Selection Guide;330
9.1.5;5.1.5 Applications;331
9.2;5.2 Polar Materials: AlN and ZnO;332
9.2.1;5.2.1 Material Deposition;332
9.2.2;5.2.2 Patterning Techniques;336
9.2.3;5.2.3 Device-Design Concerns;338
9.2.4;5.2.4 Device Examples;340
9.2.5;5.2.5 Case Study;344
9.3;5.3 Ferroelectrics: PZT;349
9.3.1;5.3.1 Material Deposition;349
9.3.2;5.3.2 Patterning Techniques;355
9.3.3;5.3.3 Device Design Concerns;359
9.3.4;5.3.4 Device Examples;364
9.3.5;5.3.5 Case Study on the Design and Processing of a RF MEMS Switch Using PZT Thin-Film Actuators;369
9.4;5.4 Summary;374
9.5;References;375
10;6 Materials and Processes in Shape Memory Alloy;385
10.1;6.1 Introduction and Principle;385
10.1.1;6.1.1 Basic Principle;385
10.1.2;6.1.2 Introduction of TiNi and TiNi-Base Ternary Alloys;387
10.1.3;6.1.3 Super-Elasticity;389
10.1.4;6.1.4 One-Way Type, Two-Way Type, All-Round-Way Type;389
10.2;6.2 Materials Properties and Fabrication Process of SMA Actuators;390
10.2.1;6.2.1 Bulk Material;391
10.2.2;6.2.2 Thin Film;391
10.2.2.1;6.2.2.1 Sputtering;392
10.2.2.2;6.2.2.2 Evaporation;393
10.2.2.3;6.2.2.3 Non-planar Thin Film Deposition;393
10.2.3;6.2.3 Micromachining;394
10.2.4;6.2.4 Etching and Lift-Off;395
10.2.4.1;6.2.4.1 Case and Example;395
10.2.5;6.2.5 Assembly;399
10.2.5.1;6.2.5.1 Mechanical Fixation;399
10.2.5.2;6.2.5.2 Adhesion;399
10.2.5.3;6.2.5.3 Welding;399
10.2.5.4;6.2.5.4 Soldering;401
10.2.6;6.2.6 Materials and Processes Selection Guidance;401
10.2.6.1;6.2.6.1 Materials (Bulk/Thin Film);401
10.2.6.2;6.2.6.2 Process;405
10.3;6.3 Applications and Devices;408
10.3.1;6.3.1 Medical;408
10.3.1.1;6.3.1.1 Stents;408
10.3.1.2;6.3.1.2 Endoscopes;408
10.3.1.3;6.3.1.3 Catheters;409
10.3.1.4;6.3.1.4 Micro Clips and Grippers;414
10.3.2;6.3.2 Fluidic Devices;417
10.3.3;6.3.3 Optical Fiber Switch;420
10.3.4;6.3.4 Tactile Pin Display;420
10.3.5;6.3.5 AFM Cantilever;422
10.3.6;6.3.6 Case Studies and Lessons Learned;423
10.3.6.1;6.3.6.1 Designs;423
10.3.6.2;6.3.6.2 Heating and Cooling;424
10.4;6.4 Summary;427
10.5;References;428
11;7 Dry Etching for Micromachining Applications;433
11.1;7.1 Dry Etching;434
11.1.1;7.1.1 Etch Metrics;434
11.2;7.2 Plasma Etching;437
11.2.1;7.2.1 Types of Etching;438
11.2.2;7.2.2 Plasma Sources;442
11.3;7.3 Plasma Process Parameters and Control;448
11.3.1;7.3.1 Energy-Driven Anisotropy;449
11.3.2;7.3.2 Inhibitor-Driven Anisotropy;450
11.3.3;7.3.3 Selectivity in Plasma Etching;451
11.4;7.4 Case Study: Etching Silicon, Silicon Dioxide, and Silicon Nitride;452
11.5;7.5 Case Study: High-Aspect-Ratio Silicon Etch Process;457
11.5.1;7.5.1 Cryogenic Dry Etching;458
11.5.2;7.5.2 Bosch Process;459
11.5.3;7.5.3 Understanding Trends for DRIE Recipe Development;462
11.6;7.6 High-Aspect-Ratio Etching of Piezoelectric Materials;464
11.6.1;7.6.1 Case Study: High-Aspect-Ratio Etching of Glass (Pyrex®) and Quartz;464
11.6.2;7.6.2 High-Aspect-Ratio Etching of Piezoelectric Materials;468
11.7;7.7 Etching of Compound Semiconductors;471
11.7.1;7.7.1 Case Study: Etching of GaAs and AlGaAs;471
11.7.2;7.7.2 Case Study: Etching of InP, InGaAs, InSb, and InAs;474
11.8;7.8 Case Study: Ion Beam Etching;476
11.9;7.9 Summary;479
11.10;References;482
12;8 MEMS Wet-Etch Processes and Procedures;487
12.1;8.1 Introduction;488
12.2;8.2 Principles and Process Architectures for Wet Etching;490
12.2.1;8.2.1 Surface Reactions and Reactant/Product Transport;494
12.2.2;8.2.2 Etchant Selectivity and Masking Considerations;497
12.2.3;8.2.3 Direct Etching and Liftoff Techniques;499
12.2.4;8.2.4 Sacrificial Layer Removal;500
12.2.5;8.2.5 Substrate Thinning and Removal;501
12.2.6;8.2.6 Impact on Process Architecture;502
12.2.7;8.2.7 Process Development for Wet Etches;503
12.2.8;8.2.8 Additional Considerations and Alternatives;506
12.3;8.3 Evaluation and Development of Wet-Etch Facilities and Procedures;509
12.3.1;8.3.1 Facility Requirements;509
12.3.1.1;8.3.1.1 General Facilities;509
12.3.1.2;8.3.1.2 Wet-Bench Services;510
12.3.1.3;8.3.1.3 Wet-Bench Equipment;510
12.3.1.4;8.3.1.4 Safety;511
12.3.2;8.3.2 Wafer Handling Considerations;512
12.3.3;8.3.3 Safety Concerns;513
12.3.4;8.3.4 Training;513
12.4;8.4 IC-Compatible Materials and Wet Etching;514
12.4.1;8.4.1 Oxide and Dielectric Etching;514
12.4.2;8.4.2 Silicon, Polysilicon, and Germanium Isotropic Etching;522
12.4.3;8.4.3 Standard Metal Etching;525
12.4.4;8.4.4 Photoresist Removal Techniques and Wafer Cleaning Processes;531
12.4.5;8.4.5 Examples: Wet Chemical Etching of IC-Compatible Materials;543
12.4.5.1;8.4.5.1 Example 1: Wet Etch of Low-Temperature Oxide;544
12.4.5.2;8.4.5.2 Example 2: Wet Etch of Silicon Nitride on Silicon;545
12.4.5.3;8.4.5.3 Example 3: Sacrificial Etch of Deposited Polysilicon Under a Structural Layer of Stress-Controlled Silicon Nitride;545
12.4.5.4;8.4.5.4 Example 4: Aluminum Etching over Patterned Nitride, Oxide, and Silicon;545
12.4.5.5;8.4.5.5 Example 5: Junction Depth Determination for an Integrated MEMS Device;545
12.5;8.5 Nonstandard Materials and Wet Etching;546
12.5.1;8.5.1 Nonstandard Dielectric, Semiconductor, and Metal Etching;547
12.5.2;8.5.2 Plastic and Polymer Etching;547
12.5.3;8.5.3 Examples: Wet Chemical Etching of Nonstandard Materials;600
12.5.3.1;8.5.3.1 Example 1: BCB Patterning and Etching;600
12.5.3.2;8.5.3.2 Example 2: COC Patterning and Solvent Bonding;609
12.5.3.3;8.5.3.3 Example 3: LIGA Mold Removal;609
12.6;8.6 Anisotropic Silicon Etching and Silicon Etch Stops;609
12.6.1;8.6.1 Anisotropic Etching of Silicon;611
12.6.2;8.6.2 Heavily Doped Silicon Etch Stops;612
12.6.3;8.6.3 Lightly Doped Silicon and Silicon--Germanium Etch Stops;619
12.6.4;8.6.4 Ion-Implanted Silicon Etch Stops;619
12.6.5;8.6.5 Electrochemical Etching and Electrochemical Etch Stops;625
12.6.6;8.6.6 Photoassisted Silicon Etching and Etch Stops;627
12.6.7;8.6.7 Thin-Film Etch Stops;631
12.6.8;8.6.8 Examples: Wet Chemical and Electrochemical Etch Stops;633
12.6.8.1;8.6.8.1 Example 1: Anisotropic Silicon Etching of an SOI Wafer;633
12.6.8.2;8.6.8.2 Example 2: Heavy Boron-Doped Etch Stop;634
12.6.8.3;8.6.8.3 Example 3: Electrochemical Etch Stop;634
12.7;8.7 Sacrificial Layer Etching;638
12.7.1;8.7.1 Sacrificial Layer Removal Techniques;640
12.7.2;8.7.2 Sacrificial Oxide Removal for Polysilicon Microstructures;641
12.7.3;8.7.3 Alternative Sacrificial and Structural Layer Combinations;641
12.7.4;8.7.4 Etch Accelerator Layers for Enhanced Sacrificial Layer Removal;647
12.7.5;8.7.5 Rinse Liquid Removal and Antistiction Coatings;649
12.7.6;8.7.6 Examples: Sacrificial Layer Removal and Structural Layer Release;650
12.7.6.1;8.7.6.1 Example 1: Fine-Grain Stress-Controlled Polysilicon with an Oxide Sacrificial Layer;650
12.7.6.2;8.7.6.2 Example 2: Poly-SiGe on a Patterned Oxide/Nitride Laminate;650
12.7.6.3;8.7.6.3 Example 3: Silicon Nitride on a Polysilicon Sacrificial Layer;653
12.7.6.4;8.7.6.4 Example 4: Aluminum on Photoresist;653
12.8;8.8 Porous Silicon Formation with Wet Chemistry;653
12.8.1;8.8.1 Nanoporous, Mesoporous, and Macroporous Silicon Formation;654
12.8.2;8.8.2 Selective Porous Silicon Removal;655
12.8.3;8.8.3 Examples: Porous Silicon Formation;655
12.8.3.1;8.8.3.1 Example 1: Chemical Porous Silicon Formation;655
12.8.3.2;8.8.3.2 Example 2: Nanoporous Silicon Formation;658
12.8.3.3;8.8.3.3 Example 3: Mesoporous Silicon Formation;658
12.8.3.4;8.8.3.4 Example 4: Macroporous Silicon Formation;659
12.9;8.9 Layer Delineation and Defect Determination with Wet Etchants;659
12.9.1;8.9.1 Dopant Level and Defect Determination with Wet Etchants;660
12.9.2;8.9.2 Layer Delineation with Wet Etchants;666
12.9.3;8.9.3 Examples: Layer Delineation and Defect Determination;667
12.9.3.1;8.9.3.1 Example 1: Metallurgical Junction Determination;667
12.9.3.2;8.9.3.2 Example 2: Cross-Sectioning and Layer Delineation;667
12.10;References;668
13;9 MEMS Lithography and Micromachining Techniques;696
13.1;9.1 Overview;696
13.2;9.2 UV Lithography;701
13.2.1;9.2.1 Photo Masks;701
13.2.2;9.2.2 Optical Projection Systems;706
13.2.2.1;9.2.2.1 Contact Aligner;706
13.2.2.2;9.2.2.2 Stepper;710
13.2.3;9.2.3 Photoresist;711
13.2.3.1;9.2.3.1 Positive Photoresist;713
13.2.3.2;9.2.3.2 Negative Photoresist;715
13.2.3.3;9.2.3.3 Image Reversal for Positive Resist (Converting Positive Resist into a Negative Resist);716
13.2.4;9.2.4 Substrate;717
13.2.5;9.2.5 Processing Steps for UV Lithography;717
13.2.5.1;9.2.5.1 Deposit Photoresist;717
13.2.5.2;9.2.5.2 Expose Photoresist;719
13.2.5.3;9.2.5.3 Develop Photoresist;720
13.2.5.4;9.2.5.4 Transfer Pattern;720
13.2.5.5;9.2.5.5 Remove Photoresist;721
13.3;9.3 Grayscale Lithography;722
13.3.1;9.3.1 Photomask Pixelation;725
13.3.2;9.3.2 Photoresist Properties for Grayscale Lithography;726
13.3.2.1;9.3.2.1 Contrast and Thickness;726
13.3.2.2;9.3.2.2 Exposure and Developing Times;726
13.3.2.3;9.3.2.3 Etch Selectivity;727
13.4;9.4 X-Ray Lithography;727
13.4.1;9.4.1 X-Ray Masks;729
13.4.2;9.4.2 X-Ray Photoresists;731
13.4.3;9.4.3 Exposure;731
13.4.4;9.4.4 Development;732
13.5;9.5 Direct-Write Lithography;733
13.5.1;9.5.1 E-Beam Lithography;733
13.5.2;9.5.2 Ion Beam Lithography and Focused Ion Beam (FIB);737
13.5.3;9.5.3 Gas-Assisted Electron and Ion Beam Lithography;739
13.5.4;9.5.4 Dip-Pen Lithography (DPN);740
13.5.5;9.5.5 Direct-Write Laser;741
13.5.6;9.5.6 Stereolithography and Microstereolithography;743
13.6;9.6 Print/Imprint Lithography;745
13.6.1;9.6.1 Inkjet Printing;748
13.6.2;9.6.2 Soft Lithography;749
13.6.3;9.6.3 Nanoimprint Lithography (NIL);749
13.6.4;9.6.4 Transfer Printing;751
13.7;9.7 Case Studies;754
13.7.1;9.7.1 Case Study 1: Substrate Cleaning-RCA Clean(s);754
13.7.1.1;9.7.1.1 Recipe Steps;755
13.7.1.2;9.7.1.2 Notes;756
13.7.2;9.7.2 Case Study 2: Substrate Cleaning, O2 Plasma Clean;756
13.7.2.1;9.7.2.1 Recipe Steps;756
13.7.2.2;9.7.2.2 Note;756
13.7.3;9.7.3 Case Study 3: Substrate Cleaning, Solvent Clean;757
13.7.3.1;9.7.3.1 Recipe Steps;757
13.7.3.2;9.7.3.2 Note;757
13.7.4;9.7.4 Case Study 4: Positive Photoresist Processing: General Processing for Shipley 1800 Series Photoresist;757
13.7.4.1;9.7.4.1 Recipe Steps;757
13.7.5;9.7.5 Case Study 5: Positive Photoresist Processing: Specific Processing for Shipley S1813;758
13.7.5.1;9.7.5.1 Recipe Steps;758
13.7.6;9.7.6 Case Study 6: Positive Photoresist Processing: Specific Processing for OiR 906-10;759
13.7.6.1;9.7.6.1 Recipe Steps;759
13.7.6.2;9.7.6.2 Notes;760
13.7.7;9.7.7 Case Study 7: Negative Photoresist Processing: Specific Processing for NR7-1500PY;760
13.7.7.1;9.7.7.1 Recipe Steps;760
13.7.7.2;9.7.7.2 Note 1;761
13.7.7.3;9.7.7.3 Note 2;762
13.7.8;9.7.8 Case Study 8: E-Beam Lithography;762
13.7.8.1;9.7.8.1 Notes on Using the NPGS Software;764
13.7.9;9.7.9 Case Study 9: Fabrication of PDMS Templates;764
13.7.10;9.7.10 Case Study 10: Photomask Fabrication [226, 227];765
13.7.10.1;9.7.10.1 Photomask Defects;767
13.7.10.2;9.7.10.2 Grayscale Lithography Pixelated Photomasks;768
13.7.10.3;9.7.10.3 Mask Manufacturers;769
13.7.11;9.7.11 Case Study 11: Multiphoton Absorption Polymerization (MAP);769
13.7.12;9.7.12 Case Study 12: Lithography Using Focused Ion Beams;770
13.8;References;772
14;10 Doping Processes for MEMS;783
14.1;10.1 Overview;783
14.2;10.2 Applications;784
14.2.1;10.2.1 Electrical Properties;784
14.2.2;10.2.2 Etch Stop Techniques;793
14.2.3;10.2.3 Materials and Process Selection Guidelines: Etch Stop Techniques;799
14.3;10.3 In Situ Doping;802
14.3.1;10.3.1 Chemical Vapor Deposition;802
14.3.2;10.3.2 Crystal Growth and Epitaxy;805
14.4;10.4 Diffusion;809
14.4.1;10.4.1 Gas Phase Diffusion;811
14.4.2;10.4.2 Solid State Diffusion;812
14.4.3;10.4.3 Masking Materials;814
14.4.4;10.4.4 Modeling;815
14.5;10.5 Ion Implantation;816
14.5.1;10.5.1 Equipment;818
14.5.2;10.5.2 Masking Materials;820
14.5.3;10.5.3 Modeling;821
14.5.4;10.5.4 Crystal Damage;821
14.5.5;10.5.5 Buried Insulator Layers;823
14.5.6;10.5.6 Case Study: Heavily Doped Polysilicon;823
14.6;10.6 Plasma Doping Processes;826
14.7;10.7 Dopant Activation Methods;828
14.7.1;10.7.1 Conventional Annealing Methods;828
14.7.2;10.7.2 Rapid Thermal Processes;830
14.7.3;10.7.3 Low-Temperature Activation;831
14.7.4;10.7.4 Process Selection Guide: Dopant Activation;831
14.7.5;10.7.5 Case Study: Rapid Thermal Anneal Versus Conventional Thermal Anneal;832
14.8;10.8 Diagnostics;833
14.8.1;10.8.1 Electrical Measurements;834
14.8.2;10.8.2 Junction Staining Techniques;837
14.8.3;10.8.3 SIMS;838
14.8.4;10.8.4 Case Study: Characterizing Junctions and Diagnosing Implant Anomalies;838
14.9;References;840
15;11 Wafer Bonding;844
15.1;11.1 Introduction;844
15.2;11.2 Direct Wafer Bonding;848
15.2.1;11.2.1 Background and Physics;849
15.2.2;11.2.2 Parameters for Successful Direct Wafer Bonding;851
15.2.2.1;11.2.2.1 Surface Roughness;851
15.2.2.2;11.2.2.2 Waviness or Nanotopography;853
15.2.2.3;11.2.2.3 Wafer Shape;853
15.2.3;11.2.3 Recommendations for Successful Direct Wafer Bonding;853
15.2.4;11.2.4 Procedure of Direct Wafer Bonding;855
15.2.4.1;11.2.4.1 Surface Preparation for Direct Wafer Bonding;855
15.2.4.2;11.2.4.2 Bonding Step -- By Hand or by Using a Wafer Bonding Tool;859
15.2.4.3;11.2.4.3 Basic Operation Principle of a Wafer Bonding Tool;862
15.2.4.4;11.2.4.4 Inspection Before Heat Treatment;864
15.2.4.5;11.2.4.5 Thermal Treatment to Increase the Bond Strength;865
15.2.4.6;11.2.4.6 Remaining Fabrication Process for MEMS Device;867
15.2.5;11.2.5 Anodic Bonding;867
15.2.6;11.2.6 Silicon--Glass Laser Bonding;872
15.3;11.3 Wafer Bonding with Intermediate Material;873
15.3.1;11.3.1 Thermocompression Bonding;873
15.3.2;11.3.2 Eutectic Bonding;873
15.3.3;11.3.3 Polymer Bonding;874
15.4;11.4 Direct Comparison of Wafer Bonding Techniques;881
15.5;11.5 Bonding of Heterogeneous Compounds;881
15.6;11.6 Wafer Bonding Process Integration;883
15.6.1;11.6.1 Localized Wafer Bonding;883
15.6.2;11.6.2 Through Wafer via Technology;884
15.7;11.7 Characterization Techniques for Wafer Bonding;890
15.8;11.8 Existing Wafer Bonding Infrastructure;893
15.8.1;11.8.1 Wafer Bonding Services;894
15.8.2;11.8.2 Bonding Tool Vendors;894
15.8.2.1;11.8.2.1 Applied Microengineering Ltd (AML), UK;895
15.8.2.2;11.8.2.2 EV Group (EVG), Austria;896
15.8.2.3;11.8.2.3 Mitsubishi Heavy Industries Ltd. (MHI), Japan;897
15.8.2.4;11.8.2.4 SUSS MicroTec AG, Germany;898
15.9;11.9 Summary and Outlook;899
15.10;References;900
16;12 MEMS Packaging Materials;905
16.1;12.1 MEMS Packages and Applications;905
16.1.1;12.1.1 Packaging Classes;906
16.1.2;12.1.2 MEMS Versus Microcircuit or Integrated Circuit Packaging;907
16.1.3;12.1.3 Application Drivers and Interfaces;907
16.1.4;12.1.4 Interfaces to Other System Components;908
16.1.4.1;12.1.4.1 Power and Signals Interface;909
16.1.4.2;12.1.4.2 Optical Interface;909
16.1.4.3;12.1.4.3 Microfluidic Interface;910
16.1.4.4;12.1.4.4 Environmental Interface;911
16.2;12.2 Package Selection;911
16.2.1;12.2.1 Metal;912
16.2.2;12.2.2 Ceramic;914
16.2.3;12.2.3 Plastic;917
16.2.4;12.2.4 Array Packaging Materials/Wafer Level Packaging;918
16.2.5;12.2.5 Custom Packaging;918
16.2.6;12.2.6 Silicon Encapsulation;918
16.2.7;12.2.7 Glass Encapsulation;919
16.3;12.3 Lids and Lid Seals;919
16.3.1;12.3.1 Optical Applications;920
16.4;12.4 Die Attach Materials and Processes;920
16.4.1;12.4.1 Conductive Die Attach;921
16.4.2;12.4.2 Metal-Filled Glasses and Epoxies;922
16.4.3;12.4.3 Other Die Attach Materials;922
16.4.4;12.4.4 Flip-Chip Bonding;923
16.4.5;12.4.5 Tape Interconnects;924
16.5;12.5 Wire Bonding;925
16.5.1;12.5.1 Gold Wire Bonding;925
16.5.1.1;12.5.1.1 Au-Al System;926
16.5.1.2;12.5.1.2 Au-Ag System;927
16.5.1.3;12.5.1.3 Au-Au System;927
16.5.1.4;12.5.1.4 Au-Cu System;927
16.5.2;12.5.2 Aluminum Systems;927
16.5.2.1;12.5.2.1 Al-Al System;928
16.5.2.2;12.5.2.2 Al-Ag System;928
16.5.2.3;12.5.2.3 Al-Ni System;928
16.5.3;12.5.3 Copper Systems;928
16.6;12.6 Electrical Connection Processes;928
16.7;12.7 Encapsulation;929
16.7.1;12.7.1 Polyurethane;929
16.7.2;12.7.2 Polyimide;929
16.7.3;12.7.3 Polydimethylsiloxane (PDMS);930
16.7.4;12.7.4 Epoxy;930
16.7.5;12.7.5 Fluorocarbon (Polytetrafluoroethylene);931
16.7.6;12.7.6 Acrylic (PMMA);931
16.7.7;12.7.7 Parylene;931
16.7.8;12.7.8 Liquid Crystal Polymer;932
16.8;12.8 Electrical and Thermal Requirements;932
16.8.1;12.8.1 Electrical Considerations;932
16.8.2;12.8.2 Thermal Considerations;933
16.9;12.9 Hermeticity and Getter Materials;934
16.9.1;12.9.1 Hermeticity and Pressurized Packaging;934
16.9.2;12.9.2 Hermeticity and Vacuum Packaging;934
16.10;12.10 Quality and Reliability;934
16.10.1;12.10.1 MEMS Packaging Reliability Concerns;935
16.10.1.1;12.10.1.1 Thermal Effects;936
16.10.1.2;12.10.1.2 Shock and Vibration;937
16.10.1.3;12.10.1.3 Humidity;937
16.10.2;12.10.2 MEMS Packaging and Quality Assurance;938
16.11;12.11 Case Studies;938
16.11.1;12.11.1 MEMS Accelerometer;940
16.11.2;12.11.2 Micro-mirror Array;941
16.11.3;12.11.3 MEMS Microphone;942
16.11.4;12.11.4 MEMS Shutters;942
16.12;12.12 Summary;944
16.13;References;946
17;13 Surface Treatment and Planarization;950
17.1;13.1 Release Processes and Surface Treatments to Prevent Stiction;951
17.1.1;13.1.1 Wet Chemical Release Techniques;953
17.1.2;13.1.2 Dry Release Techniques;953
17.2;13.2 Surface Analysis;954
17.2.1;13.2.1 Surface Chemical Composition;954
17.2.1.1;13.2.1.1 X-Ray Photoelectron Spectroscopy (XPS or ESCA);954
17.2.1.2;13.2.1.2 Scanning Auger Electron Spectroscopy (AES);955
17.2.1.3;13.2.1.3 Energy Dispersive X-Ray Spectroscopy (EDS or EDX);956
17.2.1.4;13.2.1.4 Secondary Ion Mass Spectroscopy (SIMS);957
17.2.2;13.2.2 Surface Structure and Morphology;957
17.2.2.1;13.2.2.1 Atomic Force Microscopy (AFM);957
17.2.2.2;13.2.2.2 Scanning Electron Microscopy (SEM);958
17.2.3;13.2.3 Surface Energy Measurements;958
17.3;13.3 Adhesion and Friction of MEMS;959
17.3.1;13.3.1 Measurements of Adhesion and Friction;959
17.3.1.1;13.3.1.1 Cantilever Beam Array Technique;959
17.3.1.2;13.3.1.2 Double-Clamped Beam Array Technique;960
17.3.1.3;13.3.1.3 Friction Test Structures;961
17.3.2;13.3.2 Effects of Surface Roughness;961
17.4;13.4 Chemical Modification of MEMS Surfaces;961
17.4.1;13.4.1 Treatments for Low Surface Energy;961
17.4.2;13.4.2 Siloxane and Silane Treatments;962
17.4.3;13.4.3 Weakly Chemisorbed Surfactant Films;963
17.4.4;13.4.4 Materials Properties and Process Selection Guidance;964
17.5;13.5 Surface Considerations for Biological Applications;964
17.5.1;13.5.1 Surface Modification Techniques;966
17.5.2;13.5.2 Modification of Pristine Substrate Surfaces;967
17.5.2.1;13.5.2.1 Plasma Treatment;967
17.5.2.2;13.5.2.2 Physical Adsorption;968
17.5.2.3;13.5.2.3 Covalent Linkage;968
17.5.3;13.5.3 Modification of Pre-treated Substrate Surfaces;972
17.5.3.1;13.5.3.1 Chemistry of Hydroxyl Groups (R-OH: Alcohols);973
17.5.3.2;13.5.3.2 Chemistry of Amino Groups (R--NH2: Amines);975
17.5.3.3;13.5.3.3 Chemistry of Carboxyl Groups (R--COOH: Carboxylic Acids);979
17.5.3.4;13.5.3.4 Chemistry of Mercapto Groups (R--SH; Thiols);980
17.5.3.5;13.5.3.5 Chemistry of Formyl Groups (R--CHO: Aldehydes);984
17.5.4;13.5.4 Case Studies;987
17.5.4.1;13.5.4.1 Case Study 1: Promotion of Immobilized Bioactive Proteins' Biological Activity;988
17.5.4.2;13.5.4.2 Case Study 2: Effective Enhancement of Fluorescence Detection Efficiency Using Alternative Blocking Process in Protein Microarray Assays;989
17.5.4.3;13.5.4.3 Case Study 3: Control of Specific Reaction Kinetics Involving Bifunctional Cross-Linkers;989
17.5.4.4;13.5.4.4 Case Study 4: Surface Modification Using Elaborately Derivatized Functional Groups;992
17.5.4.5;13.5.4.5 Case Study 5: Surface Patterning by Microcontact Printing;993
17.6;13.6 Surface Coating for Optical Applications;994
17.6.1;13.6.1 Fundamentals of Optical Phenomena on Surface Coatings;995
17.6.1.1;13.6.1.1 Index Variation of Materials Versus Wavelength [108];995
17.6.1.2;13.6.1.2 Fresnel Equation for Reflection [108];1001
17.6.1.3;13.6.1.3 Principle of Antireflection (AR) [108];1003
17.6.1.4;13.6.1.4 Principle of Absorption [108, 109];1007
17.6.1.5;13.6.1.5 Surface Plasmon Resonance;1008
17.6.2;13.6.2 Material Properties and Process Selection Guidelines;1010
17.6.2.1;13.6.2.1 High Reflection Applications;1010
17.6.2.2;13.6.2.2 Antireflection Applications;1011
17.6.2.3;13.6.2.3 Considerations for Surface Smoothness and Roughness;1015
17.6.2.4;13.6.2.4 Polymer Materials for Optical Applications;1017
17.6.2.5;13.6.2.5 Surface Coatings for Polymer Materials;1017
17.6.2.6;13.6.2.6 Applications for Light Absorption;1023
17.7;13.7 Chemical Mechanical Planarization;1027
17.7.1;13.7.1 Overview;1027
17.7.1.1;13.7.1.1 Chemistry of CMP;1027
17.7.1.2;13.7.1.2 Mechanics of CMP;1029
17.7.2;13.7.2 Applications;1033
17.7.2.1;13.7.2.1 Smoothing and Local Planarization;1034
17.7.2.2;13.7.2.2 Global Planarization;1035
17.7.2.3;13.7.2.3 Trench Fill;1036
17.7.3;13.7.3 Pads and Slurry;1036
17.7.3.1;13.7.3.1 Summary of Slurry and Pad;1040
17.7.4;13.7.4 Polishing Considerations for Different Materials;1040
17.7.4.1;13.7.4.1 Rate Comparison and Selectivity;1040
17.7.4.2;13.7.4.2 Dielectrics;1045
17.7.4.3;13.7.4.3 Metals;1046
17.7.4.4;13.7.4.4 Polymers;1048
17.7.5;13.7.5 Cleaning and Contamination Control;1048
17.7.6;13.7.6 Case Study;1050
17.7.6.1;13.7.6.1 Case Study 10: Magnetic Microdevice;1051
17.7.6.2;13.7.6.2 Case Study 11: A Drug-Delivery Probe with an In-line Flow Meter;1051
17.7.6.3;13.7.6.3 Case Study 12: Nanomechanical Optical Devices;1054
17.7.6.4;13.7.6.4 Case Study 13: CMP of SU-8/Permalloy Combination in MEMS Devices;1056
17.8;References;1057
18;14 MEMS Process Integration;1070
18.1;14.1 Introduction;1070
18.2;14.2 What Is Process Integration?;1071
18.3;14.3 What Is an Integrated MEMS Process?;1075
18.4;14.4 Differences Between IC and MEMS Fabrication;1075
18.5;14.5 Challenges of MEMS Process Integration;1077
18.5.1;14.5.1 Topography;1079
18.5.2;14.5.2 Material Compatibility;1081
18.5.3;14.5.3 Thermal Compatibility;1082
18.5.4;14.5.4 Circuit/MEMS Partitioning of Fabrication;1083
18.5.5;14.5.5 Tooling Constraints;1084
18.5.6;14.5.6 Circuit/MEMS Physical Partitioning;1085
18.5.7;14.5.7 Die Separation, Assembly and Packaging;1087
18.6;14.6 How Is Process Integration Performed?;1088
18.6.1;14.6.1 Integrated MEMS Process Integration Strategies;1091
18.7;14.7 Design for Manufacturability;1092
18.7.1;14.7.1 Overview;1092
18.7.2;14.7.2 Device Design for Manufacturability;1093
18.7.3;14.7.3 Process Design for Manufacturability;1094
18.7.4;14.7.4 Precision in MEMS Fabrication;1096
18.7.5;14.7.5 Package Design and Assembly;1099
18.7.6;14.7.6 System Design for Manufacturability;1100
18.7.7;14.7.7 Environmental Variations;1100
18.7.8;14.7.8 Test Variations;1101
18.7.9;14.7.9 Recommendations Regarding Design for Manufacturability;1101
18.8;14.8 Review of Existing Process Technologies for MEMS;1102
18.8.1;14.8.1 Process Selection Guide;1102
18.8.2;14.8.2 Nonintegrated MEMS Process Sequences;1102
18.8.2.1;14.8.2.1 PolyMUMPSTM (MEMSCAP);1102
18.8.2.2;14.8.2.2 Film Bulk Acoustic-Wave Resonators (FBARs) (Avago);1107
18.8.2.3;14.8.2.3 Summit V (Sandia);1111
18.8.2.4;14.8.2.4 Microphone (Knowles);1115
18.8.2.5;14.8.2.5 Silicon Resonator (SiTime);1119
18.8.2.6;14.8.2.6 Gyroscopes (Draper);1123
18.8.2.7;14.8.2.7 Bulk Accelerometer (STMicroelectronics);1124
18.8.2.8;14.8.2.8 Pressure Sensor (NovaSensor);1128
18.8.2.9;14.8.2.9 Microelectronics Wafer-Bonded (Bulk) Accelerometer Process (Ford Microelectronics);1131
18.8.2.10;14.8.2.10 Single-Crystal Reactive Etching and Metallization (SCREAM) (Cornell University);1133
18.8.2.11;14.8.2.11 High-Aspect-Ratio Combined Poly and Single-Crystal Silicon (HARPSS) MEMS Technology (University of Michigan and Georgia Tech);1134
18.8.2.12;14.8.2.12 Hybrid MEMS (Infotonics);1136
18.8.2.13;14.8.2.13 Silicon-On-Glass (University of Michigan);1140
18.8.2.14;14.8.2.14 SOI MUMPSTM (MEMSCap);1143
18.8.2.15;14.8.2.15 LIGA (CAMD, etc.);1144
18.8.2.16;14.8.2.16 RF Switch (MEMStronics);1146
18.8.2.17;14.8.2.17 MetalMUMPSTM (MEMSCap);1149
18.8.2.18;14.8.2.18 aMEMSTM (Teledyne);1151
18.8.2.19;14.8.2.19 Plastic MEMS (University of Michigan);1155
18.8.2.20;14.8.2.20 Wafer-Level Packaging (ISSYS);1157
18.8.3;14.8.3 Review of Integrated CMOS MEMS Process Technologies;1159
18.8.3.1;14.8.3.1 iMEMS -- Analog Devices;1159
18.8.3.2;14.8.3.2 DLP (Texas Instruments);1163
18.8.3.3;14.8.3.3 Integrated MEMS Pressure Sensor (Freescale);1166
18.8.3.4;14.8.3.4 Thermal Inkjet Printhead (Xerox);1169
18.8.3.5;14.8.3.5 Microbolometer (Honeywell);1174
18.8.3.6;14.8.3.6 ASIMPS and ASIM-X (CMU);1178
18.8.3.7;14.8.3.7 Integrated CMOS+RF MEMS Process (wiSpry);1179
18.8.3.8;14.8.3.8 Integrated SiGe MEMS (UCB);1181
18.8.3.9;14.8.3.9 Integrated SUMMiT (Sandia);1183
18.9;14.9 The Economic Realities of MEMS Process Development;1186
18.9.1;14.9.1 Cost and Time for MEMS Development;1186
18.9.2;14.9.2 Production Cost Models;1191
18.9.2.1;14.9.2.1 MEMS Hybrid Versus Integrated MEMS Production Cost;1191
18.10;14.10 Conclusions;1201
18.11;References;1202
19;Index;1207



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.