Gibbons / Chakraborti | Nonparametric Statistical Inference | Buch | 978-1-4200-7761-2 | www.sack.de

Buch, Englisch, 650 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 1104 g

Gibbons / Chakraborti

Nonparametric Statistical Inference


5. New Auflage 2010
ISBN: 978-1-4200-7761-2
Verlag: Taylor & Francis Ltd

Buch, Englisch, 650 Seiten, Format (B × H): 166 mm x 244 mm, Gewicht: 1104 g

ISBN: 978-1-4200-7761-2
Verlag: Taylor & Francis Ltd


Proven Material for a Course on the Introduction to the Theory and/or on the Applications of Classical Nonparametric Methods
Since its first publication in 1971, Nonparametric Statistical Inference has been widely regarded as the source for learning about nonparametric statistics. The fifth edition carries on this tradition while thoroughly revising at least 50 percent of the material.
New to the Fifth Edition

Updated and revised contents based on recent journal articles in the literature
A new section in the chapter on goodness-of-fit tests
A new chapter that offers practical guidance on how to choose among the various nonparametric procedures covered
Additional problems and examples
Improved computer figures

This classic, best-selling statistics book continues to cover the most commonly used nonparametric procedures. The authors carefully state the assumptions, develop the theory behind the procedures, and illustrate the techniques using realistic research examples from the social, behavioral, and life sciences. For most procedures, they present the tests of hypotheses, confidence interval estimation, sample size determination, power, and comparisons of other relevant procedures. The text also gives examples of computer applications based on Minitab, SAS, and StatXact and compares these examples with corresponding hand calculations. The appendix includes a collection of tables required for solving the data-oriented problems.
Nonparametric Statistical Inference, Fifth Edition provides in-depth yet accessible coverage of the theory and methods of nonparametric statistical inference procedures. It takes a practical approach that draws on scores of examples and problems and minimizes the theorem-proof format.

Jean Dickinson Gibbons was recently interviewed regarding her generous pledge to Virginia Tech.

Gibbons / Chakraborti Nonparametric Statistical Inference jetzt bestellen!

Zielgruppe


Graduate students and researchers in statistics and the social sciences.

Weitere Infos & Material


Introduction and FundamentalsIntroductionFundamental Statistical Concepts

Order Statistics, Quantiles, and Coverages IntroductionQuantile FunctionEmpirical Distribution FunctionStatistical Properties of Order Statistics Probability-Integral TransformationJoint Distribution of Order Statistics Distributions of the Median and RangeExact Moments of Order StatisticsLarge-Sample Approximations to the Moments of Order StatisticsAsymptotic Distribution of Order Statistics Tolerance Limits for Distributions and Coverages

Tests of Randomness IntroductionTests Based on the Total Number of RunsTests Based on the Length of the Longest Run Runs Up and DownA Test Based on Ranks

Tests of Goodness of Fit IntroductionThe Chi-Square Goodness-of-Fit TestThe Kolmogorov–Smirnov One-Sample Statistic Applications of the Kolmogorov–Smirnov One-Sample StatisticsLilliefors’s Test for Normality Lilliefors’s Test for the Exponential Distribution Anderson–Darling Test Visual Analysis of Goodness of Fit

One-Sample and Paired-Sample ProceduresIntroductionConfidence Interval for a Population QuantileHypothesis Testing for a Population QuantileThe Sign Test and Confidence Interval for the MedianRank-Order Statistics Treatment of Ties in Rank TestsThe Wilcoxon Signed-Rank Test and Confidence Interval

The General Two-Sample ProblemIntroductionThe Wald–Wolfowitz Runs Test The Kolmogorov–Smirnov Two-Sample Test The Median TestThe Control Median TestThe Mann–Whitney U Test and Confidence Interval

Linear Rank Statistics and the General Two-Sample ProblemIntroductionDefinition of Linear Rank Statistics Distribution Properties of Linear Rank Statistics Usefulness in Inference

Linear Rank Tests for the Location Problem IntroductionThe Wilcoxon Rank-Sum Test and Confidence Interval Other Location Tests

Linear Rank Tests for the Scale Problem IntroductionThe Mood Test The Freund–Ansari–Bradley–David–Barton Tests The Siegel–Tukey Test The Klotz Normal-Scores TestThe Percentile Modified Rank Tests for ScaleThe Sukhatme TestConfidence-Interval Procedu


Jean Dickinson Gibbons is Russell Professor Emerita of Statistics at the University of Alabama.
Subhabrata Chakraborti is a Robert C. and Rosa P. Morrow Faculty Excellence Fellow and professor of statistics at the University of Alabama.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.