E-Book, Englisch, Band 58, 340 Seiten, eBook
Reihe: Lecture Notes in Computational Science and Engineering
Gorban / Kégl / Wunsch Principal Manifolds for Data Visualization and Dimension Reduction
1. Auflage 2007
ISBN: 978-3-540-73750-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 58, 340 Seiten, eBook
Reihe: Lecture Notes in Computational Science and Engineering
ISBN: 978-3-540-73750-6
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Developments and Applications of Nonlinear Principal Component Analysis – a Review.- Nonlinear Principal Component Analysis: Neural Network Models and Applications.- Learning Nonlinear Principal Manifolds by Self-Organising Maps.- Elastic Maps and Nets for Approximating Principal Manifolds and Their Application to Microarray Data Visualization.- Topology-Preserving Mappings for Data Visualisation.- The Iterative Extraction Approach to Clustering.- Representing Complex Data Using Localized Principal Components with Application to Astronomical Data.- Auto-Associative Models, Nonlinear Principal Component Analysis, Manifolds and Projection Pursuit.- Beyond The Concept of Manifolds: Principal Trees, Metro Maps, and Elastic Cubic Complexes.- Diffusion Maps - a Probabilistic Interpretation for Spectral Embedding and Clustering Algorithms.- On Bounds for Diffusion, Discrepancy and Fill Distance Metrics.- Geometric Optimization Methods for the Analysis of Gene Expression Data.- Dimensionality Reduction and Microarray Data.- PCA and K-Means Decipher Genome.