Grimes / Mor | TiO2 Nanotube Arrays | E-Book | www.sack.de
E-Book

E-Book, Englisch, 358 Seiten

Grimes / Mor TiO2 Nanotube Arrays

Synthesis, Properties, and Applications
1. Auflage 2009
ISBN: 978-1-4419-0068-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

Synthesis, Properties, and Applications

E-Book, Englisch, 358 Seiten

ISBN: 978-1-4419-0068-5
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is the first book to provide an overview of this rapidly growing field. Vertically oriented, highly ordered TiO2 nanotube arrays are unique and easily fabricated materials with an architecture that demonstrates remarkable charge transfer as well as photocatalytic properties. This volume includes an introduction to TiO2 nanotube arrays, as well as a description of the material properties and distillation of the current research. Applications considered include gas sensing, heterojunction solar cells, water photoelectrolysis, photocatalytic CO2 reduction, as well as several biomedical applications. Written by leading researchers in the field, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications is a valuable reference for chemists, materials scientists and engineers involved with renewable energy sources, biomedical engineering, and catalysis, to cite but a few examples.    

Grimes / Mor TiO2 Nanotube Arrays jetzt bestellen!

Weitere Infos & Material


1;Preface;5
2;Contents;7
3;Introduction;12
3.1;References;23
4;Chapter 1: Fabrication of TiO2 Nanotube Arrays by Electrochemical Anodization: Four Synthesis Generations;27
4.1;Introduction;27
4.1.1;The Electrochemical Anodization Process;28
4.2;Nanotube Array Synthesis Using Aqueous Electrolytes: The First Generation;29
4.2.1;HF-Based Electrolytes;29
4.2.2;Tapered Conical Shape Nanotubes;31
4.2.3;Wall Thickness Variation;32
4.2.4;Using HNO3/HF;33
4.2.5;Using H2SO4/HF;34
4.2.6;Using H2Cr2O7/HF;34
4.2.7;Using CH3COOH/NH4F, H2SO4/NH4F;35
4.2.8;Using H3PO4/HF, H3PO4/NH4F;36
4.2.8.1;Effect of Different Cathode Metals;36
4.3;Nanotube Array Synthesis Using Buffered Electrolytes: The Second Generation;38
4.3.1;Step-by-Step Procedure: Solution Preparation, Mixing and pH Adjustment;41
4.3.2;Solution Set Preparation;41
4.3.3;Anodization with Constant Current Density;42
4.4;Synthesis of Nanotube Arrays Using Polar Organic Electrolytes: The Third Generation;44
4.4.1;Using Formamide and Dimethyl formamide electrolyte;44
4.4.2;Dimethyl Sulfoxide Electrolytes;48
4.4.3;Ethylene Glycol Electrolytes;52
4.4.3.1;Membrane Fabrication;56
4.4.4;Diethylene Glycol Electrolytes;60
4.4.5;Using Glycerol and NH4F;63
4.4.6;Methanol, Water, and HF;64
4.5;Nanotube Array Synthesis Using Non-Fluoride Based Electrolytes: The Fourth Generation;64
4.5.1;Using HCl;66
4.5.2;H2O2 Aqueous Electrolytes;66
4.5.3;HCl/H2O2 Aqueous Electrolytes;68
4.6;Fabrication of Transparent TiO2 Nanotubes Arrays;70
4.7;Mechanistic Model of Nanotube Array Formation by Potentiostatic Anodization;74
4.8;References;85
5;Chapter 2: Material Properties of TiO2 Nanotube Arrays: Structural, Elemental, Mechanical, Optical, and Electrical;93
5.1;Introduction;93
5.2;Structural and Elemental Characterization;93
5.2.1;Anodic Formation of Crystalline Metal Oxide Nanotubes;99
5.2.2;Improved Crystallization via Solvothermal Treatment;102
5.2.3;Partially Crystalline Anatase Phase Nanotubes by Anodization;104
5.3;Characterization of Doped Titania Nanotubes;105
5.3.1;Carbon Incorporation Within the Nanotubes;105
5.3.2;Nitrogen Incorporation Within the Nanotubes;106
5.3.3;Boron-Doped Nanotubes;108
5.3.4;Organic Bath;108
5.3.5;CdS-Coated Nanotubes;109
5.4;Optical Properties of Titania Nanotubes Arrays;109
5.4.1;Finite Difference Time Domain Simulation of Light Propagation in Nanotube Arrays;109
5.4.2;Measured Optical Properties;114
5.4.3;Ellipsometric Measurements;118
5.4.4;Raman Spectra Measurements;122
5.5;Electrical Property Measurements;123
5.5.1;Photocurrent Transient Measurements;123
5.5.2;Capacitance Measurements;124
5.5.2.1;Mott-Schottky Plots: Analysis of Interfacial Properties;125
5.5.2.2;Surface State Model;128
5.5.2.3;Photoeffects;130
5.6;Mechanical Properties;131
5.7;References;132
6;Chapter 3: TiO2 Nanotube Arrays: Application to Hydrogen Sensing;140
6.1;Introduction;140
6.2;High Temperature Sensors using TiO2 Nanotube Arrays;142
6.3;Self-Cleaning Room-Temperature Hydrogen Sensors;146
6.4;Room-Temperature Hydrogen Sensors of Enhanced Sensitivity;151
6.4.1;TiO2 Nanotube Arrays on Ti Foil;151
6.4.2;Transparent Hydrogen Sensors;156
6.5;Extreme Hydrogen Gas Sensitivities at Room Temperature;157
6.6;Transcutaneous Hydrogen Monitoring using TiO2 Nanotube Arrays;161
6.6.1;Cross Interference and Calibration;162
6.6.2;Transcutaneous Hydrogen and Lactose Intolerance;166
6.7;References;167
7;Chapter 4: TiO2 Nanotube Arrays: Application to Photoelectrochemical Water Splitting;173
7.1;Introduction;173
7.2;Photoelectrolysis Cell;174
7.2.1;Water Splitting Efficiency;177
7.2.1.1;Two Electrode Configuration;177
7.2.1.2;Three-Electrode Configuration;178
7.2.1.3;Efficiency Comparison Determined Using Two- and Three-Electrode Configurations;180
7.2.2;Quantum Efficiency Calculation;181
7.3;Photoelectrolysis Using Unmodified TiO2 Nanotubes;182
7.3.1;Short Nanotubes;183
7.3.2;Medium Length Nanotubes;185
7.3.3;Long Nanotubes;188
7.3.4;Roughness Factor;190
7.3.5;Effect of Electrolyte Additives;192
7.4;Photoelectrolysis Using Anionic and Cationic Doped TiO2 Nanotubes;194
7.4.1;N-Doped TiO2 Nanotubes;194
7.4.2;Carbon Doped TiO2 Nanotubes;198
7.4.3;Sulfur-Doped TiO2 Nanotubes;199
7.4.4;Boron-Doped TiO2 Nanotubes;200
7.4.5;Silicon-Doped TiO2 Nanotubes;201
7.5;Photoelectrolysis Using Surface-Sensitized TiO2 Nanotubes;202
7.5.1;CdS Sensitized TiO2 Nanotubes;202
7.5.2;CdSe Sensitized TiO2 Nanotubes;204
7.5.3;CdTe Sensitized TiO2 Nanotube Arrays [137];204
7.5.4;WO3 Coated TiO2 Nanotubes;207
7.5.5;Pt Sensitized TiO2 Nanotubes;208
7.6;Other Approaches;209
7.6.1;Polyoxophosphotungstate Encapsulated in TiO2 Nanotubes;209
7.6.2;Light Sensitized Enzymatic System with TiO2 Nanotubes;210
7.7;Self-Biased Photoelectrochemical Diodes Using Cu-Ti-O Ternary Oxide Nanotubes;212
7.7.1;Fabrication of p-Type Copper Rich Cu-Ti-O Nanotubes;213
7.7.2;Photoelectrochemical Properties;216
7.7.3;Self-Biased Heterojunction Photoelectrochemical Diodes;217
7.7.4;Benefits of nanostructuring hematite;219
7.7.5;Self-Aligned Nanoporous Iron (III) Oxide;219
7.7.6;Photoelectrochemical Properties of Self-Aligned Nanoporous Iron (III) Oxide;222
7.7.7;Fabrication and Structural Characterization of Ti-Fe-O Nanotubes;222
7.7.8;Photoelectrochemical Properties of Ti-Fe-O Nanotubes;227
7.8;Compositionally Graded Ternary Oxide Nanotube Arrays;229
7.9;References;230
8;Chapter 5: Dye-Sensitized and Bulk-Heterojunctions Solar Cells: TiO2 Nanotube Arrays as a Base Material;241
8.1;Introduction;241
8.2;Dye Sensitized Solar Cells: Operating Principles;242
8.2.1;Key DSC Processes;243
8.2.2;Factors Influencing Conversion Efficiencies;244
8.2.3;Nanocrystalline DSCs;247
8.3;Solar Cell Parameters;249
8.4;J-V Characterization Under Standard Conditions;250
8.4.1;Calibrating the Solar Simulator for DSC and Polymeric Solar Cells;250
8.4.2;Experimental Setup;251
8.5;Benefits of Vertically Oriented Uniformly Aligned TiO2 Nanotube Arrays in DSCs;252
8.5.1;Finite Difference Time Domain Application to DSCs;253
8.5.1.1;FDTD Simulations;254
8.5.1.2;Validation of Computational Model;257
8.6;Liquid Junction DSCs;263
8.6.1;Transparent TiO2 Nanotube Arrays on FTO Coated Glass: Front Side Illumination;263
8.6.2;TiO2 Nanotube Arrays on Ti Foil: Back Side Illumination;269
8.6.3;Charge Collection Properties;276
8.6.4;Electron Transport and Recombination Properties;277
8.7;Polymer Based Bulk Heterojunction Solar Cells;282
8.7.1;TiO2 Nanotubes on FTO Glass: Polymeric Bulk Heterojunction Solar Cells;286
8.7.2;Solar Cell Fabrication and Performance;290
8.7.3;TiO2-Polymer Based Solar Cells: Back Side Illumination Geometry;294
8.8;References;298
9;Chapter 6: Use of TiO2 Nanotube Arrays for Biological Applications;308
9.1;Introduction;308
9.2;Biosensors;309
9.2.1;H2O2 Detection: Nanotubes Co-immobilizedwith HRP and Thionine;309
9.2.2;Co-Immobilized with Cytochrome c;311
9.2.3;Detection of H2O2 and Glucose;311
9.3;Enhanced Blood Clotting;313
9.4;Cell Adhesion and Osteoblast Growth;315
9.5;Drug Elution from TiO2 Nanotubes;319
9.6;Hydrophobic Nanotubes: SAMs on Surface on Hydrophilic Nanotubes;324
9.7;Biological Fluids Filtration and Drug Delivery Using TiO2 Nanotubular Membrane;325
9.8;Application of Photocatalytic TiO2 Nanotube Properties;331
9.9;References;332
10;Chapter 7: Conclusions and New Directions;338
10.1;Conclusions;338
10.2;Some Future Directions;343
10.2.1;Intercalation and Supercapacitors;343
10.2.2;CO2 Reduction Using Visible Light;352
10.3;References;363
11;Index;369



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.