Gupta | Materials Forming, Machining and Post Processing | E-Book | www.sack.de
E-Book

E-Book, Englisch, 269 Seiten

Reihe: Materials Forming, Machining and Tribology

Gupta Materials Forming, Machining and Post Processing


1. Auflage 2019
ISBN: 978-3-030-18854-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 269 Seiten

Reihe: Materials Forming, Machining and Tribology

ISBN: 978-3-030-18854-2
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book provides a detailed understanding of various forming, machining, and post processing techniques. Working principle, process mechanism, salient features and latest developments are primarily focused. It presents some basic and specialized processes to produce quality engineered parts. This book also incorporates some investigations on modelling, simulation and optimization of the aforementioned processes to improve quality and performance, productivity, and sustainability. 

Kapil Gupta is a Senior Lecturer in the Dept. of Mechanical and Industrial Engineering Technology at the University of Johannesburg. Advanced machining processes, sustainable manufacturing, precision engineering and gear technology are the areas of his interest and specialization. Currently, he is doing research in advanced/modern machining,  sustainable manufacturing and gear engineering.

Gupta Materials Forming, Machining and Post Processing jetzt bestellen!

Autoren/Hrsg.


Weitere Infos & Material


1;Preface;6
2;Contents;8
3;Fundamentals in Sheet and Tube Forming: Material Characterization, Conventional and Novel Processes and Involved Mechanics;10
3.1;1 Materials Characterization of Sheet and Tube Material;12
3.1.1;1.1 Tensile Test for Sheet Metal;12
3.1.2;1.2 Tensile Test for Tube Metal;15
3.1.3;1.3 Material Input in Finite Element Method;16
3.2;2 Sheet Forming Processes;17
3.2.1;2.1 Dome Test;18
3.2.2;2.2 Forming Limit Diagram;19
3.2.3;2.3 Biaxial Test;20
3.2.4;2.4 Limiting Drawing Ratio Test (Deep Drawing Test);21
3.2.5;2.5 Hole Expansion Test;25
3.3;3 Sheet Forming Processes—Conventional Techniques;27
3.3.1;3.1 Shearing;27
3.3.2;3.2 Bending;28
3.3.3;3.3 Stamping;29
3.4;4 Sheet Forming Processes—Novel Techniques;30
3.4.1;4.1 Hydroforming;30
3.4.2;4.2 Rubber Forming;32
3.4.3;4.3 Tailor Welded Blanks;33
3.4.4;4.4 Roll Forming;34
3.4.5;4.5 Incremental Forming;35
3.4.6;4.6 Electric Assisted Forming;35
3.4.7;4.7 Explosive Forming;36
3.4.8;4.8 Electro Hydraulic Forming;37
3.4.9;4.9 Electromagnetic Forming;38
3.5;5 Tube Forming Processes;38
3.5.1;5.1 Tube Flaring;39
3.5.2;5.2 Rotational Flaring;39
3.5.3;5.3 Tube Hydroforging;40
3.5.4;5.4 Reuleaux Forming;41
3.6;6 Mechanics in Sheet Metal Forming;41
3.6.1;6.1 Equibiaxial Tension;43
3.6.2;6.2 Plane Strain;43
3.6.3;6.3 Uniaxial Tension;44
3.6.4;6.4 Pure Shear;44
3.6.5;6.5 Uniaxial Compression;44
3.6.6;6.6 Through Thickness Pressure;44
3.6.7;6.7 Through Thickness Shear;45
3.7;7 Common Challenges in Sheet Metal Forming;45
3.7.1;7.1 Springback;45
3.7.2;7.2 Buckling and Wrinkling;46
3.7.3;7.3 Fracture;46
3.8;References;47
4;Analysis and Optimization of Metal Injection Moulding Process;49
4.1;1 Introduction;50
4.2;2 Manufacturing Process;52
4.2.1;2.1 Powders Particle Size and Shape for MIM;52
4.3;3 Materials and Methodology for MIM Process;53
4.4;4 Results and Discussion;65
4.4.1;4.1 Statistical Taguchi Method;65
4.4.2;4.2 Grey Relational Analysis (GRA) and Principal Component Analysis (PCA);71
4.4.3;4.3 Summary Results of Optimization;77
4.5;5 Conclusions;80
4.6;References;81
5;On Friction-Stir Welding of 3D Printed Thermoplastics;83
5.1;1 Introduction;83
5.2;2 Research Advances in FSW;85
5.3;3 FSW and 3D Printing;88
5.3.1;3.1 Tool Design;90
5.3.2;3.2 Friction Stir Welding of 3D Printed Acrylonitrile Butadiene Styrene: Case Study;92
5.4;4 Conclusions;96
5.5;References;97
6;4D Printing;100
6.1;1 Introduction;100
6.1.1;1.1 3D Printing;101
6.2;2 Advancement in 3D Printing;101
6.2.1;2.1 4D Printing: Reinventing Manufacturing;102
6.3;3 Biomimetic;104
6.4;4 4D Printing Materials;105
6.4.1;4.1 Shape Memory Polymers (SMPs);108
6.4.2;4.2 Thermoset Shape Memory Polymers;109
6.4.3;4.3 Shape Memory Thermoplastic Polymers;109
6.4.4;4.4 Self-healing Hydrogel Materials;110
6.5;5 Applications;110
6.6;6 SWOT Analysis;111
6.7;7 Conclusions;112
6.8;8 Future Scope;113
6.9;References;114
7;Non-conventional Micro-machining Processes;115
7.1;1 Introduction;116
7.2;2 Micro Machining Process;117
7.2.1;2.1 Conventional Micro Machining Processes;117
7.2.2;2.2 Need for Non-conventional Micro Machining;118
7.2.3;2.3 Classification of Non-conventional Micro Machining Processes;118
7.3;3 Mechanical Micro-machining Processes;119
7.3.1;3.1 Ultrasonic Micro Machining;120
7.3.2;3.2 Abrasive Jet Micro Machining;121
7.3.3;3.3 Abrasive Water Jet Micro Machining;123
7.4;4 Thermal Micro-machining Processes;125
7.4.1;4.1 Laser Beam Micro Machining;125
7.4.2;4.2 Electric Discharge Micro Machining;127
7.5;5 Chemical Micro-machining Processes;128
7.5.1;5.1 Chemical Micro Milling Process;128
7.5.2;5.2 Electro Chemical Micro Machining;129
7.6;6 Hybrid Micro-machining Processes;131
7.6.1;6.1 Electrochemical Grinding (ECG);132
7.6.2;6.2 Electrochemical Discharge Machining;133
7.6.3;6.3 Abrasive Assisted Micromachining (AAMMP Process);136
7.6.4;6.4 Ultrasonic Assisted Micromachining;137
7.7;7 Conclusions;141
7.8;References;141
8; RETRACTED CHAPTER: Investigation on Spark Erosion Machining Induced Surface Integrity of Super-Alloys;146
8.1;1 Introduction;147
8.2;2 Spark-Erosion Process;149
8.2.1;2.1 Wire Electrical Discharge Machining (Wedm);149
8.2.2;2.2 Rough Cut and Trim Cutting Operation;151
8.3;3 Experimentations;152
8.4;4 Results Discussion;154
8.4.1;4.1 Cutting Speed (CS);155
8.4.2;4.2 Surface Roughness (SR);155
8.4.3;4.3 Micro Hardness;157
8.5;5 Recast Layer;158
8.6;6 Conclusions;161
8.7;References;161
9;Role of Eco-friendly Cutting Fluids and Cooling Techniques in Machining;163
9.1;1 Introduction;163
9.2;2 Cutting Fluids;166
9.2.1;2.1 Functions of Cutting Fluids;166
9.2.2;2.2 Classification of Conventional Cutting Fluids;167
9.2.3;2.3 Ecological Aspects of Conventional Cutting Fluids;169
9.2.4;2.4 Eco-friendly Cutting Fluids;170
9.2.5;2.5 Cutting Fluid Application Techniques During Machining;171
9.2.6;2.6 Role of Eco-friendly Cutting Fluids and Cooling Techniques on Machining Performance;176
9.3;3 Sustainable Machining for Future;180
9.4;4 Conclusion;180
9.5;References;181
10;Titanium Machining Using Indigenously Developed Sustainable Cryogenic Machining Facility;186
10.1;1 Introduction;187
10.2;2 Literature Review;188
10.3;3 Methodology to Design Cryogenic Fluid Delivery Setup;193
10.3.1;3.1 Selection of Delivery Pressure and Flow Rate of Cryogenic Fluid;194
10.3.2;3.2 Selection of Delivery Nozzle at the Outlet;194
10.3.3;3.3 Designing of the Cryogenic Fluid Delivery Transfer Line;194
10.4;4 Economic Aspect of Cryogenic Machining;195
10.5;5 Experimental Study on Cryogenic Machining of Ti-6Al-4V;196
10.5.1;5.1 Research Methodology;196
10.6;6 Results and Discussion;198
10.6.1;6.1 Surface Roughness;198
10.6.2;6.2 Resultant Forces;201
10.6.3;6.3 Power Consumption;202
10.7;7 Conclusions;206
10.8;References;206
11;Advanced Laser Based Surface Treatment Techniques to Improve the Quality of the Products;209
11.1;1 Introduction;210
11.1.1;1.1 Laser Glazing;210
11.1.2;1.2 Laser Shock Peening;211
11.1.3;1.3 Laser Annealing;215
11.2;2 Laser Material Interaction;216
11.3;3 Numerical Modelling;217
11.4;4 Experimental Procedure;222
11.4.1;4.1 Laser Glazing;222
11.4.2;4.2 Laser Shock Peening;223
11.4.3;4.3 Laser Annealing;224
11.5;5 Results and Discussion;225
11.5.1;5.1 Validation of Numerical Modelling;225
11.5.2;5.2 Surface Morphology;227
11.5.3;5.3 Mechanical Properties;228
11.6;6 Conclusion;229
11.7;References;229
12;LASER Cladding—A Post Processing Technique for Coating, Repair and Re-manufacturing;232
12.1;1 History of the Process;233
12.2;2 Principles of the Process Operation;234
12.3;3 Applicability of the Process;241
12.4;4 Materials Utilized in the Cladding Process;243
12.5;5 Advantages and Limitations;244
12.6;6 Recent Developments in LASER Cladding;246
12.7;References;249
13;Electrochemical Behaviour and Surface Studies on Austenitic Stainless Steel and Nickel-Based Superalloy Dissimilar Weld Joints;251
13.1;1 Introduction;252
13.2;2 Materials and Welding Process;253
13.2.1;2.1 Welding Materials;253
13.2.2;2.2 Laser Beam Welding;254
13.2.3;2.3 Electron Beam Welding;254
13.2.4;2.4 Selection of EBW and Laser Welding Process;255
13.2.5;2.5 Welding of Dissimilar Materials;257
13.3;3 Results and Discussion;258
13.4;4 Conclusions;263
13.5;References;265
14; Retraction Note to: Investigation on Spark Erosion Machining Induced Surface Integrity of Super-Alloys;267
14.1;Retraction Note to: Chapter “Investigation on Spark Erosion Machining Induced Surface Integrity of Super-Alloys” in: K. Gupta (ed.), Materials Forming, Machining and Post Processing, Materials Forming, Machining and Tribology, https://doi.org/10.1007/978-3-030-18854-26;267
15;Index;268



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.