Buch, Englisch, Band 6, 532 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1119 g
Reihe: ERCOFTAC Series
Lecture Notes from the 2nd ERCOFTAC Summerschool held in Stockholm, 10-16 June, 1998
Buch, Englisch, Band 6, 532 Seiten, Format (B × H): 160 mm x 241 mm, Gewicht: 1119 g
Reihe: ERCOFTAC Series
ISBN: 978-0-7923-5989-0
Verlag: Springer Netherlands
This single-volume work gives an introduction to the fields of transition, turbulence, and combustion modeling of compressible flows and provides the physical background for today’s modeling approaches in these fields. It presents basic equations and discusses fundamental aspects of hydrodynamical instability.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Elastizität, Plastizität, Rheologie
- Naturwissenschaften Physik Mechanik Klassische Mechanik, Newtonsche Mechanik
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Aerodynamik
Weitere Infos & Material
1 Introduction.- 1.1 Equations for compressible flows.- 1.2 Laminar boundary layers.- 1.3 Combustion.- References.- 2 Stability of Boundary Layer Flows.- 2.1 Introduction.- 2.2 Introduction to stability of incompressible parallel flows.- 2.3 Stability of compressible parallel flows.- 2.4 Stability of non-parallel compressible flows.- 2.5 Applications.- References.- 3 Transition Prediction in Industrial Applications.- 3.1 Introduction.- 3.2 Qualitative description of some transition mechanisms.- 3.3 Some theoretical elements for “natural” transition.- 3.4 The eN method.- 3.5 Application to transonic flows: laminar flow control.- 3.6 Application to high speed flows.- 3.7 Conclusion.- References.- 4 An Introduction to Turbulence Modelling.- 4.1 Introduction.- 4.2 Basic properties of turbulence and the mean flow equation.- 4.3 Transport equations for single-point moments.- 4.4 The hierarchy and history of single-point closures.- 4.5 What should a closure fulfill?.- 4.6 Purely algebraic models.- 4.7 Eddy-viscosity based two-equation models.- 4.8 Differential Reynolds stress models for incompressible flow.- 4.9 Algebraic Reynolds stress models.- References.- 5 Modelling of Turbulence in Compressible Flows.- 5.1 Introduction.- 5.2 Averaged equations.- 5.3 Compressibility effects due to turbulent fluctuations and modelling of explicit compressibility terms.- 5.4 Transport equation models.- References.- 6 Large-Eddy Simulations of Incompressible and Compressible Turbulence.- 6.1 Introduction.- 6.2 Large-eddy simulation (LES) formalism.- 6.3 Smagorinsky’s model.- 6.4 Spectral Eddy-viscosity and eddy-diffusivity models.- 6.5 Return to physical space.- 6.6 Vortex control in a round jet.- 6.7 Rotating flows.- 6.8 Compressible LES formalism.- 6.9 Compressible mixing layer.-6.10 Compressible boundary layers on a flat plate.- 6.11 Conclusion.- References.- 7 Direct Numerical Simulations of Compressible Turbulent Flows: Fundamentals and Applications.- 7.1 Introduction.- 7.2 Physical nature of compressible turbulent flows.- 7.3 Governing equations.- 7.4 Numerical methods.- 7.5 DNS of compressible free-shear flows.- 7.6 DNS of shock-turbulence interaction.- 7.7 DNS of aerodynamically-generated sound.- 7.8 Concluding remarks.- References.- 8 Turbulent Combustion Modelling.- 8.1 Introduction.- 8.2 Mixture fraction based theories.- 8.3 Large-eddy simulations.- References.




