Hegadi / Gupta / Santosh | Applied Artificial Intelligence | E-Book | www.sack.de
E-Book

E-Book, Englisch, 396 Seiten

Reihe: Computer Science

Hegadi / Gupta / Santosh Applied Artificial Intelligence

First International Conference, 2AI 2024, Solan, India, July 2–4, 2024, Proceedings
Erscheinungsjahr 2025
ISBN: 978-3-032-00793-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark

First International Conference, 2AI 2024, Solan, India, July 2–4, 2024, Proceedings

E-Book, Englisch, 396 Seiten

Reihe: Computer Science

ISBN: 978-3-032-00793-3
Verlag: Springer International Publishing
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book CCIS constitutes the refereed proceedings of the First International Conference on Applied Artificial Intelligence, 2AI 2024, held in Solan, India, during July 2–4, 2024.

The 26 full appers and 4 short papers were carefully reviewed and selected from 151 submissions. The proceedings focus on AI for Healthcare, AI for Business and Finance, AI for Defense and Information Security, AI for Agriculture, AI for Education.   

Hegadi / Gupta / Santosh Applied Artificial Intelligence jetzt bestellen!

Zielgruppe


Research

Weitere Infos & Material


AI for Healthcare.- Analysis of Feature Fusion in Deep Learning for Knee Osteoarthritis Severity Grade Classification.- Lung Cancer Detection and AnalysisUsing Machine Learning.- Machine Learning Based Depression Prediction Using Gradient Boosting Algorithm.- Patient Sickness Predictive System Using Chatbot.- EPC-CCM based Salience Equivalent Mechanism for Multimodal Medical Image.- Healthcare Effective Diabetes Disease Prediction Using AI Based Techniques.- Manual and Automated Web-Based Diagnosis and Interpretation of Mammograms of Breast Cancer and Robust Analysis.- Social Media and Stress Detection: A Machine Learning Approach.- AI for Business and FinanceComputational Optimization of Image Feature Extraction Algorithms on PySpark and Hadoop.- Sentiment Analysis of Political Party Unveiling Insights from Big Data.- AI for Defense and Information Security.- Securing Web Applications with Improved Multifactor Authentication using Browser-Based Geolocation.- Human Activity Recognition Using Machine Learning.- Predictive analytics of injection attacks in web applications.- Comparative Study of Vision-based Deep Learning Techniques for Human Action Recognition in Videos.- Person Identification Using Improved Dilated Convolutional Network for Radar Signal Based Hand Gestures.- Multimodal iris, face and fingerprint Biometric Fusion for Enhanced Person Identification using Hybrid Deep Learning.- Adaptive Inertial Weight with Artificial Rabbit Optimization for Intrusion Detection System in Cyber Security.- Deepfake Video Detection: A CSP-Dencenet and LSTM based approach.- Neural Networks in Cybersecurity: Applications for Predictive Threat Modeling.- Weighted Extreme Gradient Boosting based Cybersecurity Risk Assessment in Investment Banking and Financial Sector.- Swarm Learning based Federated Learning for Data Privacy in Cloud Environment.- AI for Agriculture.- Detection of tomato leaf disease using convolutional neural network.- PBSTAM: A Proactive Borewell Safety Using Teachable Arduino Model.- Waste Management Using Geo Special Processing Data.- Tomato Leaf Disease Detection Using Convolutional Neural Network.- AI for Education.- Recognition of Characters on English Language Number Plate using CNN .- Artificial Intelligence Based Automatic Question Paper Generation using Natural Language Processing.- Exploring Information-Theoretic Measures for Feature Extraction in Image Processing: A Comprehensive Analysis and Future Directions.- Enhancing Text Classification in Natural Language Processing: A Comparative Study of Transformer Models and the Potential of Few-Shot Learning.- A modified NSGA-II algorithm using new crowding distance and chaotic OBL techniques applied to multi-object engineering design problems.



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.