E-Book, Englisch, 460 Seiten
Hiermaier Predictive Modeling of Dynamic Processes
1. Auflage 2009
ISBN: 978-1-4419-0727-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
A Tribute to Professor Klaus Thoma
E-Book, Englisch, 460 Seiten
ISBN: 978-1-4419-0727-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Predictive Modeling of Dynamic Processes provides an overview of hydrocode technology, applicable to a variety of industries and areas of engineering design. Covering automotive crash, blast impact, and hypervelocity impact phenomena, this volume offers readers an in-depth explanation of the fundamental code components. Chapters include informative introductions to each topic, and explain the specific requirements pertaining to each predictive hydrocode. Successfully blending crash simulation, hydrocode technology and impact engineering, this volume fills a gap in the current competing literature available.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;5
2;Contents;7
3;List of Contributors;16
4;Introduction;20
5;Part I Simulation of Automotive Crash Processes;26
5.1;1 Simulation of Recoverable Foams under Impact Loading;27
5.1.1;Current Implementation According to Fu Chang;29
5.1.1.1;Theoretical Framework;29
5.1.1.2;Validation Tests;31
5.1.1.3;Application: Leg Impact;35
5.1.2;Addition of a Damage Model;37
5.1.2.1;Theoretical Framework;37
5.1.2.2;Examples;40
5.1.3;References;42
5.1.4;Introduction;28
5.2;2 The Numerical Simulation of Foam -- An Example of Inter-Industrial Synergy;44
5.2.1;Introduction;44
5.2.2;Foams -- Physical Nature and Numerical Modeling;45
5.2.3;Numerical Modeling of Foams in Automotive Crash;47
5.2.4;Impacted Foam -- The Columbia Accident;52
5.2.5;Summary and Conclusion;58
5.2.6;References;59
5.3;3 Influence of Hardening Relations on Forming Limit Curves Predicted by the Theory of Marciniak, Kuczynski, and Pokora;60
5.3.1;Introduction;60
5.3.2;Theoretical Model;62
5.3.2.1;Constitutive Equations;64
5.3.2.2;Derivation of Evolution Equations for the Onset of Instability;65
5.3.3;Numerical Solution Method;68
5.3.4;Initial Conditions;70
5.3.5;Validation;72
5.3.6;Convergence Properties;74
5.3.7;Influence of Different Hardening Relations on the FLCs;75
5.3.7.1;Effect of Various Quasi-Static Hardening Relations on Forming Limit Curves;76
5.3.7.2;Effect of Various Strain Rate Formulations on the Forming Limit Curves;78
5.3.8;Summary;80
5.3.9;References;81
5.4;4 The Challenge to Predict Material Failure in Crashworthiness Applications: Simulation of Producibility to Serviceability;83
5.4.1;Introduction;84
5.4.2;The Process Chain of Sheet Metal Part Manufacturing;84
5.4.3;Some Ideas for Failure Modelling in Forming and Crashworthiness Simulations;86
5.4.3.1;The Barlat Constitutive Model for Forming Simulations;87
5.4.3.2;Constitutive Models for Crashworthiness Applications;88
5.4.3.3;A Hybrid Approach to Estimate the Void Volume Fraction in Forming Simulations;89
5.4.3.4;A Generalized Scalar Damage Model for Forming and Crashworthiness Simulations;91
5.4.4;Path-Dependent Localization;93
5.4.4.1;Stress and Strain Measures;93
5.4.4.2;Linear Accumulation of the Instability Criterion;95
5.4.4.3;Nonlinear Accumulation of the Instability Criterion;96
5.4.5;Post Critical Behaviour;97
5.4.5.1;Damage-Dependent Yield Stress;98
5.4.5.2;Energy Dissipation and Fadeout;99
5.4.6;Application of a Demonstrator Part;100
5.4.7;Conclusions;101
5.4.8;References;103
5.5;5 Cohesive Zone Modeling for Adhesives;105
5.5.1;Introduction;106
5.5.2;Characterization Procedure;106
5.5.2.1;Bulk Tensile Tests;107
5.5.2.2;Coupon Tests;108
5.5.2.3;Fracture Mechanical Tests;109
5.5.3;Cohesive Zone Model;110
5.5.4;Validation;115
5.5.5;Application;117
5.5.6;Summary;120
5.5.7;References;120
5.6;6 Modeling the Plasticity of Various Material Classes with a Single Quadratic Yield Function;122
5.6.1;Introduction;122
5.6.2;A Quadratic Yield Function;124
5.6.3;Parameter Identification for Foams;127
5.6.4;Application to Honeycombs;129
5.6.5;Application to Carbon Fiber-Reinforced Plastics;132
5.6.6;Outlook;133
5.6.7;References;134
5.7;7 On the Computation of a Generalised Dynamic J-Integral and its Application to the Durability of Steel Structures;136
5.7.1;Introduction;136
5.7.2;Basic Equations;138
5.7.3;Theory of Configurational Forces;139
5.7.4;Finite Element Formulation;141
5.7.5;Fatigue, Stress Intensity Factor and Crack Growth Rate;142
5.7.6;Application to Durability Analysis;143
5.7.7;Summary;145
5.7.8;References;146
6;Part II Numerical Modeling of Blast and Impact Phenomena;148
6.1;8 The MAX-Analysis: New Computational and Post-Processing Procedures for Vehicle Safety Analysis;149
6.1.1;Introduction;149
6.1.2;Prediction Capabilities for Vehicle Mine and IED Blast Simulations;150
6.1.3;The MAX-Analysis: Unification of the Computational Results;152
6.1.4;Summary;154
6.2;9 Years RHT: A Review of Concrete Modelling and Hydrocode Applications;157
6.2.1;Introduction: Dynamic Measurements and Model Development;157
6.2.1.1;The Starting Point of the Developments;157
6.2.1.2;Equation of State for a Large-Scale Heterogeneous Composite;160
6.2.1.3;Combining Civil Engineering Knowledge and Shock Physics;162
6.2.2;Applications in Impact Analysis;164
6.2.2.1;Extended Validation and Sensitivity Analysis;164
6.2.2.2;Deformable Projectiles and Coupling with Explosions;168
6.2.3;Protecting Critical Infrastructure against Explosion Effects;169
6.2.3.1;Comparison to Engineering Models and Empirical Formula;172
6.2.3.2;From Power Plant Security to Future High-Rise-Buildings;173
6.2.4;Summary and Outlook;177
6.2.5;References;177
6.3;10 Numerical Simulations of the Penetration of Glass Using Two Pressure-Dependent Constitutive Models;180
6.3.1;Introduction;180
6.3.2;Materials;181
6.3.3;Experimental Techniques for Material Characterization;181
6.3.3.1;'Bomb' Technique;181
6.3.3.2;'Sleeve' Technique;183
6.3.4;Constitutive Model Interpretations;184
6.3.4.1;Drucker-Prager Model;184
6.3.4.2;Mohr-Coulomb Model;186
6.3.5;Numerical Simulation of Penetration;188
6.3.5.1;Drucker-Prager Model;189
6.3.5.2;Mohr-Coulomb Model;193
6.3.6;Summary and Conclusions;195
6.3.7;Appendix;197
6.3.8;References;199
6.4;11 On the main mechanisms in ballistic perforation of steel plates at sub-ordnance impact velocities;201
6.4.1;Introduction;202
6.4.2;Experimental Studies;203
6.4.2.1;Experimental Set-Up;203
6.4.2.2;Projectiles and Targets;204
6.4.2.3;Experimental Programs;205
6.4.3;Experimental Results;206
6.4.3.1;Effect of Projectile Impact Velocity;206
6.4.3.2;Effect of Target Thickness;207
6.4.3.3;Effect of Projectile Nose-Shape;208
6.4.3.4;Effect of Target Strength;211
6.4.3.5;Effect of Target Layering;213
6.4.3.6;Summary of Experimental Data;215
6.4.4;Material Modelling, Material Tests and Identification of Material Constants;216
6.4.4.1;Constitutive Relation and Fracture Criteria;218
6.4.4.2;Material Data and Model Calibration;221
6.4.5;Numerical Studies;223
6.4.5.1;Numerical Models;224
6.4.5.2;Some Numerical Results;225
6.4.6;Concluding Remarks;228
6.4.7;References;229
6.5;12 Dimensioning of concrete walls against small calibre impact including models for deformable penetrators and the scattering of experimental results;232
6.5.1;Introduction;232
6.5.2;Penetration and perforation of concrete walls with non-deformable penetrators;234
6.5.3;Deformable projectiles;237
6.5.3.1;Jacketed projectiles;237
6.5.3.2;Homogenous deformable projectiles;240
6.5.4;Scattering of experimental data;243
6.5.5;The new software-tool PenSim;245
6.5.6;References;247
6.6;13 Numerical Analysis of Fluiddynamic Instabilities and Pressure Fluctuations in the Near Field of a Detonation;249
6.6.1;Introduction;249
6.6.2;Physical Models;253
6.6.3;Numerical Methods;255
6.6.4;Computational Methodology;257
6.6.5;Results 1D, 2D and 3D Free Field;258
6.6.6;Results 2D Above-Ground Detonation;260
6.6.7;Conclusions;261
6.6.8;References;261
6.7;14 Numerical Simulation of Muzzle Exit and Separation Process for Sabot--Guided Projectiles at M > 1;270
6.7.1;Introduction;270
6.7.2;Technical Specifications / Experimental Setup;271
6.7.3;Numerical Solution Method;272
6.7.4;Simulation Results / Comparison with Experiments;273
6.7.5;Conclusions / Future Work;277
6.7.6;References;278
6.8;15 Numerical Analysis of the Supercavitating Flow about blunt Bodies;279
6.8.1;Introduction;279
6.8.2;Physical Models;281
6.8.2.1;Conservation Equations;281
6.8.2.2;Equation of State;281
6.8.3;Numerical Method;283
6.8.4;Steady State Flow Fields;284
6.8.5;Summary;285
6.8.6;References;286
6.9;16 Numerical Analysis Method for the RC Structures Subjected to Aircraft Impact and HE Detonation;288
6.9.1;Introduction;288
6.9.2;Analytical Method;289
6.9.2.1;Analysis Code;289
6.9.2.2;Material Models;290
6.9.3;Numerical Analyses;294
6.9.3.1;Missile Impact on RC Structure (2D);294
6.9.3.2;HE Detonations On and Near the RC Slab (2D & 3D);297
6.9.3.3;F-4 Phantom Crashing on a RC Wall (3D);303
6.9.3.4;Boeing 747 Jet Impacting on Thick Concrete Walls (3D);309
6.9.3.5;HE Detonation in Tunnel Structure with Inner Steel Liner (3D);314
6.9.4;Conclusions;318
6.9.5;References;318
6.10;17 Groundshock Displacements -- Experiment and Simulation;321
6.10.1;Introduction;322
6.10.2;Experiment;322
6.10.2.1;Experimental Setup;322
6.10.2.2;Experimental results;323
6.10.3;MSC.DYTRAN DYMMAT14 Material Model;325
6.10.3.1;Deviatoric Behavior;325
6.10.3.2;Hydrostatic Behavior;327
6.10.4;Soil Data;327
6.10.4.1;Density;328
6.10.4.2;Refraction Survey and Elastic Moduli;329
6.10.4.3;Pressiometer Tests and Volumetric Crush;330
6.10.4.4;Direct Shear Tests and Yield Surface;331
6.10.5;Simulation;332
6.10.5.1;Simulation Setup;332
6.10.5.2;Simulation Results and Discussion;333
6.10.6;Conclusion;336
6.10.7;References;336
7;Part III Numerical Simulation of Hypervelocity Impact Effects;337
7.1;18 Hypervelocity Impact Induced Shock Waves and Related Equations of State;338
7.1.1;Introduction;338
7.1.2;Shock Wave Formation and the Necessity of Adequate Equations of State;339
7.1.2.1;Wave Dispersion due to Nonlinear Compressive Material Characteristics;339
7.1.2.2;Requirements to an EoS with Respect to Shock Formation;341
7.1.3;Equations of State for the Simulations of Shock Processes;342
7.1.3.1;Complete versus Incomplete Equations of State;342
7.1.3.2;Mie-Grüneisen Shock EoS;344
7.1.3.3;Equations of State for Porous Materials;345
7.1.4;References;352
7.2;19 Artificial Viscosity Methods for Modelling Shock Wave Propagation;354
7.2.1;Introduction;354
7.2.2;The Von Neumann - Richtmyer viscosity;355
7.2.2.1;Demonstration;357
7.2.2.2;Wall Heating;361
7.2.3;Test problems for shock viscosity formulations;361
7.2.3.1;Sod shock tube;361
7.2.3.2;Noh generic constant velocity shock;363
7.2.3.3;Saltzman piston;364
7.2.4;Alternative forms of artificial viscosity;366
7.2.4.1;Edge centred viscosity;367
7.2.4.2;Tensor viscosity;368
7.2.5;Summary;369
7.2.6;References;369
7.3;20 Review of Development of the Smooth Particle Hydrodynamics (SPH) Method;371
7.3.1;Introduction;371
7.3.2;Basic Formulation ;376
7.3.3;Conservation Equations;377
7.3.4;Kernel Function;381
7.3.5;Variable Smoothing Length;382
7.3.6;Neighbour Search;383
7.3.7;SPH Shortcomings;384
7.3.7.1;Consistency;384
7.3.7.2;Tensile Instability;388
7.3.7.3;Zero-Energy Modes;393
7.3.8;Summary;395
7.3.9;References;396
7.4;21 Assessing the Resiliency of Composite Structural Systems and Materials Used in Earth-Orbiting Spacecraft to Hypervelocity Projectile Impact;401
7.4.1;Introduction;401
7.4.2;Historical Overview;404
7.4.3;Composite Material Panels;405
7.4.3.1;HVI Response Characterization;405
7.4.3.2;Use in MOD Protection Systems;407
7.4.4;Honeycomb Sandwich Panels;410
7.4.4.1;Early Work -- The 1960s and 70s;410
7.4.4.2;The 1980s and 90s;411
7.4.4.3;Recent Work ;413
7.4.5;Conclusions;414
7.4.6;References;415
7.5;22 Numerical Simulation in Micrometeoroid and Orbital Debris Risk Assessment;421
7.5.1;Introduction;421
7.5.2;Ballistic Limit Simulation of a Representative Satellite Structure Wall;427
7.5.2.1;Target Definition;428
7.5.2.2;Experimental Validation of the Numerical Simulation;428
7.5.2.3;Simulation Results;430
7.5.3;Simulation of Hypervelocity Impact on a Representative Satellite Structure Wall Causing Penetration and Fragment Ejection;432
7.5.3.1;Target Definition;434
7.5.3.2;Experimental Validation of the Numerical Simulation;434
7.5.3.3;Simulation Results;438
7.5.4;Numerical Simulation of Impact Induced Disturbances in Satellite Structures;439
7.5.4.1;Target Definition;440
7.5.4.2;Experimental Validation of the Numerical Simulation;440
7.5.4.3;Simulation Results;443
7.5.5;Discussion and Summary;448
7.5.6;References;449
7.6;23 Numerical Modeling of Crater Formation by Meteorite Impact and Nuclear Explosion;451
7.6.1;Charles L. Mader;451
7.6.2;The NOBEL Code;451
7.6.3;Modeling the Arizona Meteor Crater;453
7.6.4;Modeling the SEDAN Crater Created by a Nuclear Explosion;456
7.6.5;Conclusions;459
7.6.6;References;461
8;Index;462




