Buch, Englisch, 260 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
Buch, Englisch, 260 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 417 g
Reihe: Lecture Notes in Artificial Intelligence
ISBN: 978-3-540-67194-7
Verlag: Springer Berlin Heidelberg
Withthe unprecedented rate at which data is being collected today in almostall elds of human endeavor, there is an emerging economic and scientic need to extract useful information from it. For example, many companies already have data-warehouses inthe terabyte range (e.g., FedEx, Walmart).The WorldWide Web has an estimated 800 millionweb-pages. Similarly,scienti c data is rea- ing gigantic proportions (e.g., NASA space missions, Human Genome Project). High-performance, scalable, parallel, and distributed computing is crucial for ensuring system scalabilityand interactivityas datasets continue to grow in size and complexity. Toaddress thisneedweorganizedtheworkshoponLarge-ScaleParallelKDD Systems, which was held in conjunction with the 5th ACM SIGKDD Inter- tional Conference on Knowledge Discovery and Data Mining, on August 15th, 1999, San Diego, California. The goal of this workshop was to bring researchers and practitioners together in a setting where they could discuss the design, - plementation,anddeploymentoflarge-scaleparallelknowledgediscovery (PKD) systems, which can manipulate data taken from very large enterprise or sci- tic databases, regardless of whether the data is located centrally or is globally distributed. Relevant topics identie d for the workshop included: { How to develop a rapid-response, scalable, and parallel knowledge discovery system that supports global organizations with terabytes of data.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Datenkompression, Dokumentaustauschformate
- Mathematik | Informatik EDV | Informatik Daten / Datenbanken Automatische Datenerfassung, Datenanalyse
- Mathematik | Informatik EDV | Informatik Informatik Logik, formale Sprachen, Automaten
- Mathematik | Informatik EDV | Informatik Informatik Künstliche Intelligenz Wissensbasierte Systeme, Expertensysteme
- Mathematik | Informatik EDV | Informatik Technische Informatik Netzwerk-Hardware
Weitere Infos & Material
Large-Scale Parallel Data Mining.- Parallel and Distributed Data Mining: An Introduction.- Mining Frameworks.- The Integrated Delivery of Large-Scale Data Mining: The ACSys Data Mining Project.- A High Performance Implementation of the Data Space Transfer Protocol (DSTP).- Active Mining in a Distributed Setting.- Associations and Sequences.- Efficient Parallel Algorithms for Mining Associations.- Parallel Branch-and-Bound Graph Search for Correlated Association Rules.- Parallel Generalized Association Rule Mining on Large Scale PC Cluster.- Parallel Sequence Mining on Shared-Memory Machines.- Classification.- Parallel Predictor Generation.- Efficient Parallel Classification Using Dimensional Aggregates.- Learning Rules from Distributed Data.- Clustering.- Collective, Hierarchical Clustering from Distributed, Heterogeneous Data.- A Data-Clustering Algorithm on Distributed Memory Multiprocessors.