E-Book, Englisch, Band 47, 250 Seiten
Hojny Modeling Steel Deformation in the Semi-Solid State
1. Auflage 2017
ISBN: 978-3-319-40863-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 47, 250 Seiten
Reihe: Advanced Structured Materials
ISBN: 978-3-319-40863-7
Verlag: Springer Nature Switzerland
Format: PDF
Kopierschutz: 1 - PDF Watermark
This book addresses selected aspects of steel-deformation modelling, both at very high temperatures and under the conditions in which the liquid and the solid phases coexist. Steel-deformation modelling with its simultaneous solidification is particularly difficult due to its specificity and complexity. With regard to industrial applications and the development of new, integrated continuous casting and rolling processes, the issues related to modelling are becoming increasingly important. Since the numerous industrial tests that are necessary when traditional methods are used to design the process of continuous casting immediately followed by rolling are expensive, new modelling concepts have been sought. Comprehensive tests were applied to solve problems related to the deformation of steel with a semi-solid core. Physical tests using specialist laboratory instruments (Gleeble 3800thermo-mechanical simulator, NANOTOM 180 N computer tomography, Zwick Z250 testing equipment, 3D blue-light scanning systems), and advanced mathematical modelling (finite element method (FEM), SPH smoothed particle method, cellular automata method CA) were used. This book presents in detail a modelling concept for steel deformation in the semi-solid state based on an approach integrating physical and computer simulations with a full or partial information exchange between these areas.
Autoren/Hrsg.
Weitere Infos & Material
1;Acknowledgment;6
2;Contents;7
3;Nomenclature;10
4;Abstract;13
5;1 Introduction;14
6;2 State of the Art;17
6.1;References;28
7;3 Aim of the Study;34
8;4 Integration of Physical and Computer Simulation;36
8.1;4.1 Characteristics of the Integrated Modelling Concept;36
8.2;4.2 Hybrid Analytical-Numerical Model of Mushy Steel Deformation;41
8.2.1;4.2.1 Resistance Heating Model;45
8.3;4.3 “One Decision Software”—The DEFFEM Package;46
8.4;4.4 Summary;49
8.5;References;50
9;5 Spatial Solutions Based on the Particle Method;51
9.1;5.1 Introduction;51
9.2;5.2 The Smoothed Particle Hydrodynamics (SPH) Method;53
9.2.1;5.2.1 Fluid Model;55
9.3;5.3 Test Cases to Validate the Solver;57
9.3.1;5.3.1 Free Particles Fall;57
9.3.2;5.3.2 Structure Impact;61
9.4;5.4 Summary;63
9.5;References;64
10;6 Spatial Solutions Based on the Finite Element Method;66
10.1;6.1 Thermal Model;66
10.1.1;6.1.1 Discretization for Steady Heat Flow Cases;71
10.1.2;6.1.2 Discretization for Transient Heat Flow Cases;72
10.2;6.2 Solidification Model (FEM Approach);74
10.3;6.3 Mechanical Model;76
10.3.1;6.3.1 Spatial Solution;77
10.3.1.1;6.3.1.1 Transformation of the Coordinate System and Integration;83
10.3.1.2;6.3.1.2 Time Problem;88
10.4;6.4 Solidification Model (CAFE Approach);90
10.5;References;92
11;7 Physical Simulation of Steel Deformation in the Semi-solid State;94
11.1;7.1 Material and Test Methodology;96
11.1.1;7.1.1 Samples and Tools;97
11.1.2;7.1.2 The Determination of Characteristic Temperatures;98
11.1.3;7.1.3 Thermal Process Map (TPM);102
11.2;7.2 Preliminary Experimental Research of Steel Deformation in the Semi-solid State;103
11.2.1;7.2.1 The Dependence of Steel Microstructure Parameters on the Cooling Rate During Solidification;105
11.2.2;7.2.2 Steel Ductility Tests;110
11.2.3;7.2.3 Macrostructure and Microstructure;118
11.3;7.3 Summary;126
11.4;References;127
12;8 Modelling Concept Based upon Axially Symmetrical Models;129
12.1;8.1 Direct Simulation Using the Gleeble Thermo-Mechanical Simulator;129
12.1.1;8.1.1 Testing the Temperature Distribution;130
12.1.2;8.1.2 Macrostructure and Microstructure;133
12.2;8.2 Application of Tomography to the Spatial Analysis of the Melting Zone;141
12.3;8.3 Numerical Modelling with the DEFFEM Simulation System;148
12.3.1;8.3.1 Modelling of the Resistance Heating Process;148
12.3.1.1;8.3.1.1 Example Results of Resistance Heating;153
12.3.2;8.3.2 Modelling the Deformation Process;159
12.3.2.1;8.3.2.1 Rheological Model;160
12.3.2.2;8.3.2.2 The Numerical Identification Methodology (NIM) for the Low Temperature Range;162
12.3.2.3;8.3.2.3 The Direct Identification Methodology (DIM) for the Extra-High Temperature Range;165
12.3.2.4;8.3.2.4 The Numerical Identification Methodology (NIM) for the Extra-High Temperature Range;172
12.4;8.4 Summary;180
12.5;References;181
13;9 Modelling Concept Based upon Three-Dimensional Models;182
13.1;9.1 Modified Experimental Research Methodology;182
13.2;9.2 Resistance Heating Model;185
13.3;9.3 Modelling the Resistance Heating Process;187
13.4;9.4 Deformation Process;197
13.5;9.5 Microstructure;202
13.6;9.6 Summary;213
13.7;References;215
14;10 Summary and Future Work;216
15;Appendix A;219
16;Appendix B;223
17;Appendix C;228
18;Appendix D;240
19;Appendix E;243




