Buch, Englisch, 232 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g
Buch, Englisch, 232 Seiten, Format (B × H): 155 mm x 235 mm, Gewicht: 376 g
Reihe: Advances in Material Research and Technology
ISBN: 978-3-030-50110-5
Verlag: Springer International Publishing
This book presents recent advances in experimental and theoretical research on energy materials, focusing on materials that can potentially be used in the production of solar cells, hydrogen and energy storage devices. It discusses in detail the latest synthetic methods, processes, characterization methods and applications of materials like perovskite materials, metal sulfides, nanomaterials, and two-dimensional, transition metal dichalcogenides.
Zielgruppe
Research
Autoren/Hrsg.
Fachgebiete
- Technische Wissenschaften Energietechnik | Elektrotechnik Alternative und erneuerbare Energien
- Technische Wissenschaften Maschinenbau | Werkstoffkunde Technische Mechanik | Werkstoffkunde Materialwissenschaft: Elektronik, Optik
- Technische Wissenschaften Energietechnik | Elektrotechnik Energieumwandlung, Energiespeicherung
Weitere Infos & Material
Chapter 1: Inorganic perovskite material for energy harvesting Author: Guijun Li
Abstract1. Introduction2. Material fundamentals: Crystal structure and Physical property3. Synthesis and Characterization4. Inorganic perovskite single junction solar cell5. Perovskite tandem solar cell6. Summary
Chapter 2: Progress in growth and development of perovskite single crystals and their potential use in future devicesAuthor: Mrinal Dutta Abstract1. Introduction2. Crystal structure3. Crystal growth techniques3.1 Temperature lowering method3.1.1.1 Bottom seeded solution growth method3.1.1.2 Top seeded solution growth (TSSG) method3.2 Inverse temperature crystallization (ITC) methods3.3 Bridgman growth method3.4 Floating-zone (FZ) method3.5 Droplet-pinned crystallization (DPC) method3.6 Anti-solvent vapor-assisted crystallization (AVC)3.7 Slow evaporation method3.8 Hydrophobic interface con?ned lateral crystal growth method4. Properties5. Applications5.1 Photovoltaics5.2 Gas sensors5.3 Detectors6. Future aspects
Chapter 3: Perovskite Materials and its application in thin film solar cellsAuthors: Ranjana Jha and Darshan Sharma
Abstract 1. Introduction 2. Synthesis techniques of perovskite materials 2.1. In-situ vs Ex-situ 2.2. Solid state method vs wet chemical methods 3. Distinguish characteristics of perovskite materials 3.1. Size matters 3.2. Structural characteristics 3.3. Optical characteristics 3.4. Electronic characteristics 3.5. Others 4. Application in thin film solar cells 4.1. Types of perovskite materials used in thin film solar cells 4.1.1. Inorganic perovskite 4.1.2. Organo-metal halides perovskite 4.1.3. Green perovskite (Lead-free) 4.2. Configuration of perovskite solar cells (PSCs) 4.2.1. Convention type of PSCs 4.2.2. Inverted type of PSCs 4.3. Present status of perovskites in thin film solar cells 5. Challenges involved in perovskite based solar cells 6. Future perspective in perovskite solar cells 7. Conclusions Acknowledgements References
Chapter 4: Advances in Nano-Materials used in Photovoltaic/Thermal SystemsAuthors: Ali H A Al-Waeli, Hussein A Kazem
Abstract1. Introduction2. PV/T principle and performance3. Nano materials used for PV/T cooling4. Results and discussions5. Conclusions6. References
Chapter 5: Pivotal role of nanomaterials in development of efficient thin film solar cellsAuthors: Ranjana Jha and Darshan Sharma
AbstractList of Abbreviations
1. Introduction1.1. Fundamentals of solar energy conversion1.1.1. Solar spectrum1.1.2. Air Mass1.1.3. Solar energy conversion technologies1.2. Photovoltaic parameters1.2.1. Short circuit current (Jsc)1.2.2. Open circuit voltage (Voc)1.2.3. Fill Factor (FF)1.2.4. Maximum power point (Pmpp)1.2.5. Power conversion efficiency (PCE)1.2.6. Incident photon-to-current efficiency (IPCE)1.3. Generations of solar cells1.4. Thin film solar cells2. Distinguish characteristics of Nano-materials 2.1. Size matters: Quantum confinement2.1. 2.2. Tunable energy bandgaps2.2. Carrier multiplication2.3. Optical characteristics2.4. Electronic characteristics2.5. Others3. Fabrication techniques of Thin film solar cells 3.1. In-situ vs Ex-situ3.1. 3.2. Chemical Bath deposition3.2. SILAR3.3. Electrochemical deposition3.4. Sol-gel3.5. Spin-coat3.6. Screen printing3.7. Hydrothermal/Solvothermal3.8. Molecular linker attachement3.9. Direct adsorption3.10. Electrophoretic deposition3.11. Chemical vapour deposition3.12. Molecular beam epitaxy3.13. Others4. Recent advances in thin film solar cells4.1. Related to Dye sensitized solar cells4.1.1. Configuration4.1.2. Charge transportation mechanism4.1.3. Present status4.1.4. Challenges ahead4.2. Related to Quantum dots sensitized solar cells4.2.1. Configuration4.2.2. Charge transportation mechanism4.2.3. Present status4.2.4. Challenges ahead4.3. Related to organic solar cells4.3.1. Configuration4.3.2. Charge transportation mechanism4.3.3. Present status4.3.4. Challenges ahead4.4. Related to Perovskite solar cells4.4.1. Configuration4.4.2. Charge transportation mechanism4.4.3. Present status4.4.4. Challenges ahead4.5. Related to tandem solar cells4.5.1. Configuration4.5.2. Charge transportation mechanism4.5.3. Present status4.5.4. Challenges ahead5. Future perspective in thin film solar cells6. ConclusionsAcknowledgementsReferences
Chapter 6: Si quantum dots for next generation solar energy harvester Author: Mrinal Dutta
Abstract1. Introduction2. Synthesis2.1 Bottom up approach2.1.1 Plasma assisted synthesis2.1.2 Solution phase synthesis2.2 Top-down approach2.2.1 Laser ablation2.2.2 Electrochemical etching3. Properties4. Surface Chemistry5. Doping6. Photovoltaics of Si QD solar cell 6.1 All Silicon solar cell6.2 Silicon QD hybrid solar cell 6.3 Hot carrier solar cells7. Future aspects
Chapter 7: Studies on synthesis and various characteristics of Green materials for energy conversion and storage applicationsAuthors: Medha Bhushan, Ranjana Jha and Rekha Bhardwaj
Abstract1. Introduction 1.1 Why Sustainable environments? 1.2 Various strategies to create sustainable environment. 1.3 What are green nano-materials? 1.3.1 Green materials for Energy generation 1.3.1.1 Metal Oxides(ZnO,TiO2,MoO3) 1.3.1.2 Metal Sulphides(ZnS,NiS) 1.3.1.3 Graphitic carbon Nitrides 1.3.1.4 Others2 . Synthesis of Green energy materials 2.1 Different green precursors required for synthesis 2.2 Different reaction conditions 2.3 Various methods for synthesis 2.3.1 Solvothermal Method 2.3.2 Hydrothermal Method 2.3.3 Co-precipitation method 2.3.4 Thermal Decomposition 2.3.5 Sol-gel method 2.3.6 Micro emulsion method 2.3.7 Others3. Basic characteristics of green materials 3.1 Structure & Morphology 3.2 Optical 3.3 Electrical 3.4 Magnetic 3.5 Others4. Various parameters affecting these characteristics 4.1 Temperature and Pressure 4.2 Molarity 4.3 Precursors 4.4 Others5. Basic fundamentals for energy conversion 5.1 Light absorption 5.2 Generation & Separation of charge carriers 5.3 Storage 5.4 Stability 5.5 Photon recycling 5.6 Transportation 5.7 Material limits to photo voltage6. Basic operation for energy conversion devices 6.1 Current –Voltage Characteristics 6.2 Power Conversion Efficiency 6.3 Analysis of Fill-Factor 6.4 Efficiency limits 7. Various applications of Green –energy materials 7.1 Solar Cells 7.1.1 DSSCs (Dye Sensitized Solar Cells) 7.1.2 QDSSCs (Quantum Dot Sensitized Solar cells) 7.2 HER (Hydrogen Evolution reaction) 7.3 Supercapactors 7.4 Batteries 7.4.1 Li-ion Batteries 7.4.2 Na-ion Batteries 7.4.3 Mg-ion Batteries 7.5 LEDs (Light emitting Diodes)8. Different difficulties associated with energy devices utilizing green energy materials.9. Future perspectives10. ConclusionsAcknowledgementsReferences
Chapter 8: The efficiency of two-dimensional layered group VIB transition metal dichalcogenides as photocatalytic hydrogen productionAuthor: Ihsan Erikat Abstract1. Introduction2. The bulk properties of titanium dichalcogenides2.1. Titanium disulfide (TiS2)2.2. Titanium diselenide (TiSe2)2.3. Titanium ditelluride (TiTe2)3. The Properties of single layer and two layers of titanium dichalcogenides.3.1. Titanium disulfide (TiS2)3.2. Titanium diselenide (TiSe2)3.2.1.1. 3.3 Titanium ditelluride (TiTe2)4. Hydrogen production on single and two layers of titanium dichalcogenides4.1. Titanium disulfide (TiS2)4.2. Titanium diselenide (TiSe2)4.3. Titanium ditelluride (TiTe2)5. ConclusionsReferences
Chapter 9: Photoluminescence of Spray-Deposited CdS Thin FilmsAuthor: Shadia Ikhmayies
Abstract1- Introduction2- Micro Structure3- Transmittance and Absorbance4- Band Gap Energy 5- Refractive Index and Extinction Coefficient6- Dielectric Constant7- Photoluminescence8- ConclusionsReferences
Chapter 10: Properties of ZnO Thin Films Prepared by the Spray Pyrolysis Method on Glass SubstratesAuthor: Shadia Ikhmayies
Abstract1- Abstract2- Introduction3- Micro Structure4- Transmittance and Absorbance5- Band Gap Energy 6- Refractive Index and Extinction Coefficient7- Dielectric Constant8- Photoluminescence9- ConclusionsReferences




