E-Book, Englisch, Band 8, 438 Seiten, eBook
Imai Applied Hyperfunction Theory
1992
ISBN: 978-94-011-2548-2
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, Band 8, 438 Seiten, eBook
Reihe: Mathematics and its Applications
ISBN: 978-94-011-2548-2
Verlag: Springer Netherland
Format: PDF
Kopierschutz: 1 - PDF Watermark
The first part of the book gives a detailed account of fundamental operations such as the four arithmetical operations applicable to hyperfunctions, namely differentiation, integration, and convolution, as well as Fourier transform. Fourier series are seen to be nothing but periodic hyperfunctions. In the second part, based on the general theory, the Hilbert transform and Poisson-Schwarz integral formula are treated and their application to integral equations is studied. A great number of formulas obtained in the course of treatment are summarized as tables in the appendix. In particular, those concerning convolution, the Hilbert transform and Fourier transform contain much new material.
For mathematicians, mathematical physicists and engineers whose work involves generalized functions.
Zielgruppe
Research
Autoren/Hrsg.
Weitere Infos & Material
Series Editor's Preface. Preface. 1. Introduction. 2. Operations on Hyperfunctions. 3. Basic Hyperfunctions. 4. Hyperfunctions Depending on Parameters. 5. Fourier Transformation. 6. Fourier Transformation of Power-Type Hyperfunctions. 7. Upper (Lower)-Type Hyperfunctions. 8. Fourier Transforms - Existence and Regularity. 9. Fourier Transformation - Asymptotic Behaviour. 10. Periodic Hyperfunctions and Fourier Series. 11. Analytic Continuation and Projection of Hyperfunctions. 12. Products of Hyperfunctions. 13. Convolution of Hyperfunctions. 14. Convolution of Periodic Hyperfunctions. 15. Hilbert Transformation, Conjugate Hyperfunction. 16. Poisson-Schwarz Integration Formulae. 17. Integral Equations. 18. Laplace Transformation. Epilogue. References. Appendices A: Symbols. B: Functions, Hyperfunctions and Generating Functions. C: Special Functions. D: Power-Type Hyperfunctions with Negative Integer Power. E: Upper-Type and Lower-Type Hyperfunctions. F: Hyperfunctions and Generating Functions. G: Convolutions. H: Hilbert Transforms. I: Fourier Transforms. J: Laplace Transforms. K: Cosine Transforms and Sine Transforms. Index.




