Ioan-Bot / Grad / Wanka | Duality in Vector Optimization | E-Book | www.sack.de
E-Book

E-Book, Englisch, 400 Seiten

Reihe: Vector Optimization

Ioan-Bot / Grad / Wanka Duality in Vector Optimization


1. Auflage 2009
ISBN: 978-3-642-02886-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark

E-Book, Englisch, 400 Seiten

Reihe: Vector Optimization

ISBN: 978-3-642-02886-1
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark



This book presents fundamentals and comprehensive results regarding duality for scalar, vector and set-valued optimization problems in a general setting. One chapter is exclusively consecrated to the scalar and vector Wolfe and Mond-Weir duality schemes.

Ioan-Bot / Grad / Wanka Duality in Vector Optimization jetzt bestellen!

Weitere Infos & Material


1;Preface;7
2;Contents;9
3;List of symbols and notations;13
4;1 Introduction;16
5;2 Preliminaries on convex analysis and vectoroptimization;23
5.1;2.1 Convex sets;23
5.1.1;2.1.1 Algebraic properties of convex sets;23
5.1.2;2.1.2 Topological properties of convex sets;28
5.2;2.2 Convex functions;33
5.2.1;2.2.1 Algebraic properties of convex functions;33
5.2.2;2.2.2 Topological properties of convex functions;39
5.3;2.3 Conjugate functions and subdifferentiability;44
5.3.1;2.3.1 Conjugate functions;44
5.3.2;2.3.2 Subdifferentiability;52
5.4;2.4 Minimal and maximal elements of sets;56
5.4.1;2.4.1 Minimality;56
5.4.2;2.4.2 Weak minimality;59
5.4.3;2.4.3 Proper minimality;60
5.5;2.5 Vector optimization problems;71
6;3 Conjugate duality in scalar optimization;76
6.1;3.1 Perturbation theory and dual problems;76
6.1.1;3.1.1 The general scalar optimization problem;76
6.1.2;3.1.2 Optimization problems having the composition with a linearcontinuous mapping in the objective function;79
6.1.3;3.1.3 Optimization problems with geometric and cone constraints;81
6.2;3.2 Regularity conditions and strong duality;86
6.2.1;3.2.1 Regularity conditions for the general scalar optimizationproblem;86
6.2.2;3.2.2 Regularity conditions for problems having the compositionwith a linear continuous mapping in the objective function;89
6.2.3;3.2.3 Regularity conditions for problems with geometric and coneconstraints;93
6.3;3.3 Optimality conditions and saddle points;99
6.3.1;3.3.1 The general scalar optimization problem;99
6.4;3.4 The composed convex optimization problem;113
6.4.1;3.4.1 A first dual problem to (PCC);113
6.4.2;3.4.2 A second dual problem to (PCC);118
6.5;3.5 Stable strong duality and formulae for conjugatefunctions and subdifferentials;122
6.5.1;3.5.1 Stable strong duality for the general scalar optimizationproblem;123
6.5.2;3.5.2 The composed convex optimization problem;124
6.5.3;3.5.3 Problems having the composition with a linear continuousmapping in the objective function;127
6.5.4;3.5.4 Problems with geometric and cone constraints;130
7;4 Conjugate vector duality via scalarization;135
7.1;4.1 Fenchel type vector duality;135
7.1.1;4.1.1 Duality with respect to properly efficient solutions;135
7.1.2;4.1.2 Duality with respect to weakly efficient solutions;142
7.2;4.2 Constrained vector optimization: a geometricapproach;144
7.2.1;4.2.1 Duality with respect to properly efficient solutions;144
7.2.2;4.2.2 Duality with respect to weakly efficient solutions;149
7.3;4.3 Constrained vector optimization: a linearscalarization approach;151
7.3.1;4.3.1 A general approach for constructing a vector dual problemvia linear scalarization;152
7.3.2;4.3.2 Vector dual problems to (PV C) as particular instances ofthe general approach;156
7.3.3;4.3.3 The relations between the dual vector problems to (PV C);160
7.3.4;4.3.4 Duality with respect to weakly efficient solutions;165
7.4;4.4 Vector duality via a general scalarization;171
7.4.1;4.4.1 A general duality scheme with respect to a generalscalarization;172
7.4.2;4.4.2 Linear scalarization;177
7.4.3;4.4.3 Maximum(-linear) scalarization;178
7.4.4;4.4.4 Set scalarization;180
7.4.5;4.4.5 (Semi)Norm scalarization;182
7.5;4.5 Linear vector duality;185
7.5.1;4.5.1 The duals introduced via linear scalarization;185
7.5.2;4.5.2 Linear vector duality with respect to weakly efficientsolutions;188
7.5.3;4.5.3 Nakayama’s geometric dual in the linear case;190
8;5 Conjugate duality for vector optimizationproblems with finite dimensional image spaces;193
8.1;5.1 Another Fenchel type vector dual problem;193
8.1.1;5.1.1 Duality with respect to properly efficient solutions;194
8.1.2;5.1.2 Comparisons to (DV A) and (DV ABK);204
8.1.3;5.1.3 Duality with respect to weakly efficient solutions;206
8.2;5.2 A family of Fenchel-Lagrange type vector duals;210
8.2.1;5.2.1 Duality with respect to properly efficient solutions;211
8.2.2;5.2.2 Duality with respect to weakly efficient solutions;221
8.2.3;5.2.3 Duality for linearly constrained vector optimization problems;224
8.3;5.3 Comparisons between different duals to (PV FC);230
8.4;5.4 Linear vector duality for problems with finitedimensional image spaces;239
8.4.1;5.4.1 Duality with respect to properly efficient solutions;239
8.4.2;5.4.2 Duality with respect to weakly efficient solutions;244
8.5;5.5 Classical linear vector duality in finite dimensionalspaces;247
8.5.1;5.5.1 Duality with respect to efficient solutions;247
8.5.2;5.5.2 Duality with respect to weakly efficient solutions;256
9;6 Wolfe and Mond-Weir duality concepts;260
9.1;6.1 Classical scalar Wolfe and Mond-Weir duality;260
9.1.1;6.1.1 Scalar Wolfe and Mond-Weir duality: nondifferentiable case;260
9.1.2;6.1.2 Scalar Wolfe and Mond-Weir duality: differentiable case;262
9.1.3;6.1.3 Scalar Wolfe and Mond-Weir duality under generalizedconvexity hypotheses;265
9.2;6.2 Classical vector Wolfe and Mond-Weir duality;271
9.2.1;6.2.1 Vector Wolfe and Mond-Weir duality: nondifferentiable case;272
9.2.2;6.2.2 Vector Wolfe and Mond-Weir duality: differentiable case;275
9.2.3;6.2.3 Vector Wolfe and Mond-Weir duality with respect to weaklyefficient solutions;280
9.3;6.3 Other Wolfe and Mond-Weir type duals and specialcases;286
9.3.1;6.3.1 Scalar Wolfe and Mond-Weir duality without regularityconditions;287
9.3.2;6.3.2 Vector Wolfe and Mond-Weir duality without regularityconditions;291
9.3.3;6.3.3 Scalar Wolfe and Mond-Weir symmetric duality;294
9.3.4;6.3.4 Vector Wolfe and Mond-Weir symmetric duality;296
9.4;6.4 Wolfe and Mond-Weir fractional duality;301
9.4.1;6.4.1 Wolfe and Mond-Weir duality in scalar fractionalprogramming;301
9.4.2;6.4.2 Wolfe and Mond-Weir duality in vector fractionalprogramming;305
9.5;6.5 Generalized Wolfe and Mond-Weir duality: aperturbation approach;313
9.5.1;6.5.1 Wolfe type and Mond-Weir type duals for general scalaroptimization problems;313
9.5.2;6.5.2 Wolfe type and Mond-Weir type duals for different scalaroptimization problems;314
9.5.3;6.5.3 Wolfe type and Mond-Weir type duals for general vectoroptimization problems;317
10;7 Duality for set-valued optimization problemsbased on vector conjugacy;321
10.1;7.1 Conjugate duality based on efficient solutions;321
10.1.1;7.1.1 Conjugate maps and the subdifferential of set-valued maps;321
10.1.2;7.1.2 The perturbation approach for conjugate duality;329
10.1.3;7.1.3 A special approach - vector k-conjugacy and duality;340
10.2;7.2 The set-valued optimization problem withconstraints;344
10.2.1;7.2.1 Duality based on general vector conjugacy;345
10.2.2;7.2.2 Duality based on vector k-conjugacy;352
10.2.3;7.2.3 Stability criteria;356
10.3;7.3 The set-valued optimization problem having thecomposition with a linear continuous mapping in theobjective function;362
10.3.1;7.3.1 Fenchel set-valued duality;362
10.3.2;7.3.2 Set-valued gap maps for vector variational inequalities;366
10.4;7.4 Conjugate duality based on weakly efficient solutions;370
10.4.1;7.4.1 Basic notions, conjugate maps and subdifferentiability;370
10.4.2;7.4.2 The perturbation approach;376
10.5;7.5 Some particular instances of (PSVGw);382
10.5.1;7.5.1 The set-valued optimization problem with constraints;382
10.5.2;7.5.2 The set-valued optimization problem having the compositionwith a linear continuous mapping in the objective map;387
10.5.3;7.5.3 Set-valued gap maps for set-valued equilibrium problems;389
11;References;394
12;Index;405



Ihre Fragen, Wünsche oder Anmerkungen
Vorname*
Nachname*
Ihre E-Mail-Adresse*
Kundennr.
Ihre Nachricht*
Lediglich mit * gekennzeichnete Felder sind Pflichtfelder.
Wenn Sie die im Kontaktformular eingegebenen Daten durch Klick auf den nachfolgenden Button übersenden, erklären Sie sich damit einverstanden, dass wir Ihr Angaben für die Beantwortung Ihrer Anfrage verwenden. Selbstverständlich werden Ihre Daten vertraulich behandelt und nicht an Dritte weitergegeben. Sie können der Verwendung Ihrer Daten jederzeit widersprechen. Das Datenhandling bei Sack Fachmedien erklären wir Ihnen in unserer Datenschutzerklärung.