E-Book, Englisch, 423 Seiten
Jackson / Davim Machining with Abrasives
1. Auflage 2010
ISBN: 978-1-4419-7302-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
E-Book, Englisch, 423 Seiten
ISBN: 978-1-4419-7302-3
Verlag: Springer
Format: PDF
Kopierschutz: 1 - PDF Watermark
Abrasive machining is one of the most important processes used in manufacturing engineering to remove unwanted material and to obtain the desired geometry and surface quality. Abrasive machining processes are processes where material is removed from a work piece using a multitude of hard angular abrasive particles or grains which may or may not be bonded to form a tool. Abrasive Machining discusses the fundamentals and advances in the abrasive machining processes, and provides a complete overview of the newly developing areas in the field including but not limited to, high efficiency deep grinding and micro and nanogrinding.
Autoren/Hrsg.
Weitere Infos & Material
1;Preface;6
2;About the Editors;8
3;Contents;12
4;Contributors;14
5;Chapter 1: Abrasive Tools and Bonding Systems;16
5.1;1.1 Abrasive Grain Characteristics;16
5.1.1;1.1.1 Grain Shape;1
5.1.2;1.1.2 Attritious Wear Factors;23
5.1.3;1.1.3 Grain Fracture Toughness;26
5.2;1.2 Silicon Carbide;33
5.3;1.3 Fused Alumina;36
5.3.1;1.3.1 Grain Types;42
5.4;1.4 Alumina Zirconia;45
5.5;1.5 ``Ceramic´´ Sol Gel Alumina Abrasives;49
5.6;1.6 Superabrasives;53
5.6.1;1.6.1 Diamond;54
5.7;1.7 Vitrified Bonding Systems;58
5.7.1;1.7.1 Wear of Vitrified Grinding Wheels;60
5.7.1.1;1.7.1.1 Attritious Wear;61
5.7.1.2;1.7.1.2 Fracture Wear;62
5.7.1.3;1.7.1.3 Wheel Wear Mechanisms;64
5.7.2;1.7.2 Wheel Wear and Grinding Forces;65
5.7.3;1.7.3 Assessment of Grinding Forces and Wear;66
5.7.4;1.7.4 Effect of Workpiece Material on Wheel Wear;67
5.7.5;1.7.5 Effect of Abrasive and Bond Composition on Wheel Performance;69
5.7.6;1.7.6 Vitrified Bonding Materials;69
5.7.6.1;1.7.6.1 Effect of Particle Size of Constituent Materials;72
5.7.6.2;1.7.6.2 Effect of Mullite and Glass Content;73
5.7.6.3;1.7.6.3 Effect of Quartz Content;74
5.7.6.4;1.7.6.4 Ceramic Bonding Materials and Bond Strength;77
5.7.6.5;1.7.6.5 Effect of Interfacial Cohesion on Bond Strength and Wheel Wear;79
5.7.7;1.7.7 Reactions in Ceramic Bonds;81
5.7.7.1;1.7.7.1 Densification and Phase Analysis;82
5.7.7.1.1;Theoretical Phase Analysis: Use of Equilibrium Diagrams;82
5.7.7.1.2;Formation of Mullite in Kaolinite Clays;84
5.7.7.1.3;Effect of Heat on Feldspar and Quartz;84
5.7.7.1.4;Effect of Heat on Clay-Based Materials;85
5.7.7.1.5;Effects of Cooling;86
5.8;1.8 Conclusions;86
5.9;References;87
6;Chapter 2: Heat Treatment and Performance of Vitrified Grinding Wheels;93
6.1;2.1 Introduction;93
6.2;2.2 Grinding Wheel Structure Formation During Heat Treatment;94
6.2.1;2.2.1 Physico-Chemical Processes that Occur During Firing;97
6.2.2;2.2.2 Ceramic Bond Minerals that Form During Firing;99
6.3;2.3 Case Study I: Interfacial Compounds and Their Effect on Grinding Wheel Wear;106
6.3.1;2.3.1 Wear Mechanisms;108
6.3.1.1;2.3.1.1 Abrasive Wear;108
6.3.1.2;2.3.1.2 Fracture Wear;109
6.3.2;2.3.2 Microstructure of Abrasive Grains;111
6.3.2.1;2.3.2.1 High Purity Aluminum Oxide;111
6.3.2.2;2.3.2.2 Titanium-Doped Aluminum Oxide;113
6.3.2.3;2.3.2.3 Cubic Boron Nitride;113
6.3.3;2.3.3 Experimental Procedure;114
6.3.3.1;2.3.3.1 Measurement of Mechanical Properties;114
6.3.3.2;2.3.3.2 Manufacture of Grinding Wheels;116
6.3.3.3;2.3.3.3 Measurement of Wear;116
6.3.4;2.3.4 Experimental Results;116
6.3.4.1;2.3.4.1 Mechanical Properties;116
6.3.4.2;2.3.4.2 Wear of Grinding Wheels;117
6.3.5;2.3.5 Discussion of Interfacial Compounds on Grinding Wheel Wear;122
6.4;2.4 Case Study II: Dissolution of Quartz and Its Effect on Grinding Wheel Wear;124
6.4.1;2.4.1 Dissolution Models for Vitrified Grinding Wheel Bonds;127
6.4.2;2.4.2 Experimental Procedures;128
6.4.2.1;2.4.2.1 Raw Materials and Preparation;128
6.4.2.2;2.4.2.2 X-Ray Diffraction of Vitrified Bonding Systems;129
6.4.2.3;2.4.2.3 Grinding Wheel Performance;130
6.4.3;2.4.3 Experimental Results;132
6.4.3.1;2.4.3.1 Silicon Carbide Bonding Systems: Verification and Comparison of Dissolution Models for Quartz;132
6.4.3.2;2.4.3.2 Aluminum Oxide Bonding Systems: Verification and Comparison of Dissolution Models for Quartz;136
6.4.3.3;2.4.3.3 Grinding Wheel Experiments;138
6.5;2.5 Discussion;140
6.6;2.6 Conclusions;142
6.7;References;143
7;Chapter 3: Grinding Wheel Safety and Design;145
7.1;3.1 Introduction;145
7.2;3.2 Rotational Stresses;146
7.3;3.3 Factor of Safety;148
7.4;3.4 Segmented Grinding Wheels;149
7.5;3.5 High Speed Segmented Grinding Wheels;151
7.5.1;3.5.1 Grinding Wheels Capable of Being Dressed;151
7.5.2;3.5.2 Electroplated Grinding Wheels;152
7.6;3.6 Safety of Grinding Wheels;156
7.7;3.7 Slotted Grinding Wheels;158
7.8;3.8 Recessed Grinding Wheels;160
7.8.1;3.8.1 Small Cup Recessed Grinding Wheels;160
7.8.1.1;3.8.1.1 Computational Analysis;163
7.8.1.2;3.8.1.2 Experimental Methods;170
7.8.1.2.1;Computational Stress Analysis;170
7.8.1.2.2;Determination of Bursting Speed;172
7.8.1.2.3;Determination of Mechanical Properties of Grinding Wheels;173
7.8.1.3;3.8.1.3 Experimental Results;174
7.8.1.3.1;Computational Stress Analysis;174
7.8.1.3.2;Parallel-Sided Grinding Wheels;174
7.8.1.3.3;Small Cup Recessed Grinding Wheels;176
7.8.2;3.8.2 Large Cup Recessed Grinding Wheels;179
7.8.2.1;3.8.2.1 Computational Stress Analysis;179
7.9;3.9 Conclusions;189
7.10;References;194
8;Chapter 4: Dressing of Grinding Wheels;195
8.1;4.1 Introduction;195
8.2;4.2 Grinding Wheel Conditioning;196
8.2.1;4.2.1 Profiling;197
8.2.1.1;4.2.1.1 Stationary Dressers;197
8.2.1.2;4.2.1.2 Rotary Dressers;199
8.2.2;4.2.2 Sharpening;200
8.2.3;4.2.3 Cleaning;203
8.3;4.3 Diamond Dressing Tools;203
8.3.1;4.3.1 Diamond Coating;205
8.3.2;4.3.2 Manufacture of Diamond Dressing Tools;207
8.4;4.4 Dressing with Stationary Diamond Dressing Tools;211
8.5;4.5 Dressing with Rotary Diamond Dressing Tools;213
8.5.1;4.5.1 Diamond Profile Rollers;214
8.5.2;4.5.2 Diamond form Rollers;220
8.5.3;4.5.3 Diamond Cup Wheels;224
8.5.4;4.5.4 Crushing;225
8.5.5;4.5.5 Touch Dressing;226
8.5.6;4.5.6 Continous Dressing;228
8.6;4.6 Ultrasonic Assisted Dressing;228
8.6.1;4.6.1 Ultrasonic Vibration Systems;229
8.6.2;4.6.2 Kinematics of Ultrasonic Assisted Dressing;229
8.6.3;4.6.3 Ultrasonic Assisted Dressing with Stationary Dressers;231
8.6.4;4.6.4 Ultrasonic Assisted Dressing with Rotary Dressers;233
8.7;4.7 Laser Dressing;239
8.7.1;4.7.1 Principle of Laser Conditioning;240
8.7.2;4.7.2 Thermal Consideration of Laser Conditioning;241
8.7.3;4.7.3 Laser Conditioning of Conventional Grinding Wheels;242
8.7.4;4.7.4 Laser Conditioning of Superabrasive Grinding Wheels;244
8.8;4.8 Electro-Assisted Conditioning Methods;248
8.8.1;4.8.1 Electrolytic In-process Dressing;249
8.8.2;4.8.2 Electro-Discharge Dressing and Electrocontact Discharge Dressing;250
8.9;4.9 Conclusions;252
8.10;4.10 Nomenclature;253
8.11;References;255
9;Chapter 5: Surface Integrity of Materials Induced by Grinding;259
9.1;5.1 Introduction;259
9.2;5.2 Residual Stresses and Subsurface Microstructures;260
9.2.1;5.2.1 Grinding of Metals;260
9.2.2;5.2.2 Grinding of Ceramics;266
9.2.2.1;5.2.2.1 Surface Topography After Grinding;266
9.2.2.2;5.2.2.2 Subsurface Structure;268
9.2.3;5.2.3 Grinding of Composites;269
9.2.3.1;5.2.3.1 Influence of Fiber Orientation;271
9.2.3.2;5.2.3.2 Influence of Grinding Depth;273
9.2.3.3;5.2.3.3 Influence of Grinding Wheel Speed and Table Speed;275
9.2.4;5.2.4 Grinding of Monocrystalline Silicon;275
9.3;5.3 Summary;277
9.4;References;278
10;Chapter 6: Traditional and Non-traditional Control Techniques for Grinding Processes;282
10.1;6.1 Introduction;282
10.2;6.2 Conventional Control Techniques;283
10.2.1;6.2.1 Fixed-Parameter Control Technique;283
10.2.2;6.2.2 Adaptive Control Technique;285
10.3;6.3 Adaptive Force Control Application;288
10.4;6.4 Non-linear Adaptive Control with Self-tuning Ability;292
10.5;6.5 Adaptive Control Constraint and Adaptive Control Optimization;297
10.6;6.6 Intelligent Control Techniques;302
10.7;6.7 Hybrid Control Schemes;310
10.8;6.8 Conclusions;312
10.9;References;313
11;Chapter 7: Nanogrinding;316
11.1;7.1 Introduction;317
11.2;7.2 Analysis of Microstructural Deformation;317
11.3;7.3 Cutting Forces, Stress and Temperature;319
11.4;7.4 Three-Dimensional Machining Simulations;322
11.5;7.5 Experimental Nanogrinding;323
11.5.1;7.5.1 Analysis of Nanogrinding Grains;325
11.5.2;7.5.2 Fracture Dominated Wear Model;331
11.5.3;7.5.3 Nanogrinding Procedure;332
11.5.4;7.5.4 Stress Analysis;335
11.5.5;7.5.5 Porous Nanogrinding Tools;339
11.5.5.1;7.5.5.1 Dissolution Models for Quartz in Bonding Bridges;342
11.5.5.2;7.5.5.2 Preparation of Nanogrinding Wheel Structure;343
11.5.5.3;7.5.5.3 X-Ray Diffraction of Bonding Systems;346
11.5.5.4;7.5.5.4 Refractory Bonding Systems;347
11.5.5.5;7.5.5.5 Fusible Bonding Systems;352
11.6;7.6 Conclusions;355
11.7;References;355
12;Chapter 8: Polishing Using Flexible Abrasive Tools and Loose Abrasives;357
12.1;8.1 Introduction;357
12.2;8.2 Polishing with Flexible Abrasive Tools;358
12.2.1;8.2.1 Robotic Polishing of Aerospace Components Using Abrasive Belts;358
12.2.1.1;8.2.1.1 Work Materials and Polishing Requirements;360
12.2.1.2;8.2.1.2 Systems for Robotic Polishing;361
12.2.1.3;8.2.1.3 Part Gripper and Polishing Head;362
12.2.1.4;8.2.1.4 Robotic Polishing Processes;363
12.2.1.4.1;Process Parameters;363
12.2.1.4.2;Material Removal and Surface Finish;365
12.2.1.4.3;Tool Wear and Compensation;366
12.2.1.5;8.2.1.5 Process Optimization and Quality Assurance;369
12.2.2;8.2.2 Polishing of Fibre Optic end Faces Using Abrasive Films;371
12.2.2.1;8.2.2.1 Fibre Optic Connector and Polishing Set-Up;371
12.2.2.2;8.2.2.2 Effects of Abrasive and Polishing Protocol;372
12.2.2.3;8.2.2.3 Effect of Suspensions on Surface Quality and Optic Performance;374
12.3;8.3 Polishing with Free Abrasives;378
12.3.1;8.3.1 Polishing of Microbores Using Liquid Suspended Abrasive Flow;378
12.3.1.1;8.3.1.1 Experimental Apparatus and Working Principle;379
12.3.1.2;8.3.1.2 Surface Characteristics and Roughness of Polished Bores;380
12.3.2;8.3.2 Polishing of Free-Form Component with Free Abrasives;385
12.3.2.1;8.3.2.1 Tumbling Method and Apparatus;385
12.3.2.2;8.3.2.2 Polishing Media;387
12.3.2.3;8.3.2.3 Effects of Polishing Conditions;387
12.3.2.4;8.3.2.4 Effect of Tumbling on Buffing Cycle Time;390
12.3.2.5;8.3.2.5 Barrel Polishing;391
12.4;8.4 Concluding Remarks;392
12.5;References;394
13;Chapter 9: Impact Abrasive Machining;397
13.1;9.1 Introduction;397
13.2;9.2 Generation of Abrasive Jet;399
13.2.1;9.2.1 Pure Fluid Jet;400
13.2.2;9.2.2 Abrasive Jet;403
13.2.3;9.2.3 Design Rules;405
13.2.4;9.2.4 Research Directions;407
13.3;9.3 Material Removal by Impact;408
13.3.1;9.3.1 Ductile Erosion;410
13.3.2;9.3.2 Brittle Erosion;412
13.3.3;9.3.3 Unified Erosion Model;413
13.3.4;9.3.4 Material Removal by Abrasive Jet;414
13.3.5;9.3.5 Design Rules;417
13.4;9.4 Process Improvement;418
13.4.1;9.4.1 Nozzle Planar Tilting;419
13.4.2;9.4.2 Nozzle Lateral Tilting;420
13.4.3;9.4.3 Controlled Nozzle Oscillation;421
13.4.4;9.4.4 Multi-pass Cutting;421
13.5;9.5 Machining Operations;422
13.5.1;9.5.1 Milling and Its Siblings;423
13.5.2;9.5.2 Turning;425
13.5.3;9.5.3 Micro-machining;426
13.6;References;427
14;Index;432




